$$$\frac{1}{\left(g - 27\right)^{\frac{2}{3}}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{1}{\left(g - 27\right)^{\frac{2}{3}}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{1}{\left(g - 27\right)^{\frac{2}{3}}}\, dg$$$.

Çözüm

$$$u=g - 27$$$ olsun.

Böylece $$$du=\left(g - 27\right)^{\prime }dg = 1 dg$$$ (adımlar » görülebilir) ve $$$dg = du$$$ elde ederiz.

İntegral şu hale gelir

$${\color{red}{\int{\frac{1}{\left(g - 27\right)^{\frac{2}{3}}} d g}}} = {\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=- \frac{2}{3}$$$ ile uygulayın:

$${\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}={\color{red}{\int{u^{- \frac{2}{3}} d u}}}={\color{red}{\frac{u^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1}}}={\color{red}{\left(3 u^{\frac{1}{3}}\right)}}={\color{red}{\left(3 \sqrt[3]{u}\right)}}$$

Hatırlayın ki $$$u=g - 27$$$:

$$3 \sqrt[3]{{\color{red}{u}}} = 3 \sqrt[3]{{\color{red}{\left(g - 27\right)}}}$$

Dolayısıyla,

$$\int{\frac{1}{\left(g - 27\right)^{\frac{2}{3}}} d g} = 3 \sqrt[3]{g - 27}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{1}{\left(g - 27\right)^{\frac{2}{3}}} d g} = 3 \sqrt[3]{g - 27}+C$$

Cevap

$$$\int \frac{1}{\left(g - 27\right)^{\frac{2}{3}}}\, dg = 3 \sqrt[3]{g - 27} + C$$$A


Please try a new game Rotatly