$$$\frac{1}{1 - \sin{\left(2 x \right)}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{1}{1 - \sin{\left(2 x \right)}}\, dx$$$.
Çözüm
$$$u=2 x$$$ olsun.
Böylece $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{2}$$$ elde ederiz.
İntegral şu hale gelir
$${\color{red}{\int{\frac{1}{1 - \sin{\left(2 x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(\sin{\left(u \right)} - 1\right)}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=- \frac{1}{2}$$$ ve $$$f{\left(u \right)} = \frac{1}{\sin{\left(u \right)} - 1}$$$ ile uygula:
$${\color{red}{\int{\left(- \frac{1}{2 \left(\sin{\left(u \right)} - 1\right)}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{\sin{\left(u \right)} - 1} d u}}{2}\right)}}$$
$$$1$$$ ifadesini $$$\sin^2\left(\frac{ u }{2}\right)+\cos^2\left(\frac{ u }{2}\right)$$$ olarak yeniden yazın ve sinüs için çift açı formülünü uygulayın: $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$:
$$- \frac{{\color{red}{\int{\frac{1}{\sin{\left(u \right)} - 1} d u}}}}{2} = - \frac{{\color{red}{\int{\frac{1}{- \sin^{2}{\left(\frac{u}{2} \right)} + 2 \sin{\left(\frac{u}{2} \right)} \cos{\left(\frac{u}{2} \right)} - \cos^{2}{\left(\frac{u}{2} \right)}} d u}}}}{2}$$
Kareye tamamlayın (adımlar » görülebilir):
$$- \frac{{\color{red}{\int{\frac{1}{- \sin^{2}{\left(\frac{u}{2} \right)} + 2 \sin{\left(\frac{u}{2} \right)} \cos{\left(\frac{u}{2} \right)} - \cos^{2}{\left(\frac{u}{2} \right)}} d u}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{1}{\left(\sin{\left(\frac{u}{2} \right)} - \cos{\left(\frac{u}{2} \right)}\right)^{2}}\right)d u}}}}{2}$$
Payı ve paydayı $$$\sec^2\left(\frac{ u }{2}\right)$$$ ile çarpın.:
$$- \frac{{\color{red}{\int{\left(- \frac{1}{\left(\sin{\left(\frac{u}{2} \right)} - \cos{\left(\frac{u}{2} \right)}\right)^{2}}\right)d u}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{\sec^{2}{\left(\frac{u}{2} \right)}}{\left(\tan{\left(\frac{u}{2} \right)} - 1\right)^{2}}\right)d u}}}}{2}$$
$$$v=\tan{\left(\frac{u}{2} \right)} - 1$$$ olsun.
Böylece $$$dv=\left(\tan{\left(\frac{u}{2} \right)} - 1\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} \right)}}{2} du$$$ (adımlar » görülebilir) ve $$$\sec^{2}{\left(\frac{u}{2} \right)} du = 2 dv$$$ elde ederiz.
Dolayısıyla,
$$- \frac{{\color{red}{\int{\left(- \frac{\sec^{2}{\left(\frac{u}{2} \right)}}{\left(\tan{\left(\frac{u}{2} \right)} - 1\right)^{2}}\right)d u}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{2}{v^{2}}\right)d v}}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$'i $$$c=-2$$$ ve $$$f{\left(v \right)} = \frac{1}{v^{2}}$$$ ile uygula:
$$- \frac{{\color{red}{\int{\left(- \frac{2}{v^{2}}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- 2 \int{\frac{1}{v^{2}} d v}\right)}}}{2}$$
Kuvvet kuralını $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-2$$$ ile uygulayın:
$${\color{red}{\int{\frac{1}{v^{2}} d v}}}={\color{red}{\int{v^{-2} d v}}}={\color{red}{\frac{v^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- v^{-1}\right)}}={\color{red}{\left(- \frac{1}{v}\right)}}$$
Hatırlayın ki $$$v=\tan{\left(\frac{u}{2} \right)} - 1$$$:
$$- {\color{red}{v}}^{-1} = - {\color{red}{\left(\tan{\left(\frac{u}{2} \right)} - 1\right)}}^{-1}$$
Hatırlayın ki $$$u=2 x$$$:
$$- \left(-1 + \tan{\left(\frac{{\color{red}{u}}}{2} \right)}\right)^{-1} = - \left(-1 + \tan{\left(\frac{{\color{red}{\left(2 x\right)}}}{2} \right)}\right)^{-1}$$
Dolayısıyla,
$$\int{\frac{1}{1 - \sin{\left(2 x \right)}} d x} = - \frac{1}{\tan{\left(x \right)} - 1}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{1}{1 - \sin{\left(2 x \right)}} d x} = - \frac{1}{\tan{\left(x \right)} - 1}+C$$
Cevap
$$$\int \frac{1}{1 - \sin{\left(2 x \right)}}\, dx = - \frac{1}{\tan{\left(x \right)} - 1} + C$$$A