$$$\frac{1}{\left(3 - 5 x\right)^{2}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{1}{\left(3 - 5 x\right)^{2}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{1}{\left(3 - 5 x\right)^{2}}\, dx$$$.

Çözüm

$$$u=3 - 5 x$$$ olsun.

Böylece $$$du=\left(3 - 5 x\right)^{\prime }dx = - 5 dx$$$ (adımlar » görülebilir) ve $$$dx = - \frac{du}{5}$$$ elde ederiz.

İntegral şu hale gelir

$${\color{red}{\int{\frac{1}{\left(3 - 5 x\right)^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{5 u^{2}}\right)d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=- \frac{1}{5}$$$ ve $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ ile uygula:

$${\color{red}{\int{\left(- \frac{1}{5 u^{2}}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u^{2}} d u}}{5}\right)}}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-2$$$ ile uygulayın:

$$- \frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{5}=- \frac{{\color{red}{\int{u^{-2} d u}}}}{5}=- \frac{{\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}}{5}=- \frac{{\color{red}{\left(- u^{-1}\right)}}}{5}=- \frac{{\color{red}{\left(- \frac{1}{u}\right)}}}{5}$$

Hatırlayın ki $$$u=3 - 5 x$$$:

$$\frac{{\color{red}{u}}^{-1}}{5} = \frac{{\color{red}{\left(3 - 5 x\right)}}^{-1}}{5}$$

Dolayısıyla,

$$\int{\frac{1}{\left(3 - 5 x\right)^{2}} d x} = \frac{1}{5 \left(3 - 5 x\right)}$$

Sadeleştirin:

$$\int{\frac{1}{\left(3 - 5 x\right)^{2}} d x} = - \frac{1}{25 x - 15}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{1}{\left(3 - 5 x\right)^{2}} d x} = - \frac{1}{25 x - 15}+C$$

Cevap

$$$\int \frac{1}{\left(3 - 5 x\right)^{2}}\, dx = - \frac{1}{25 x - 15} + C$$$A


Please try a new game Rotatly