$$$- 8 \cos{\left(t \right)} - 1$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(- 8 \cos{\left(t \right)} - 1\right)\, dt$$$.
Çözüm
Her terimin integralini alın:
$${\color{red}{\int{\left(- 8 \cos{\left(t \right)} - 1\right)d t}}} = {\color{red}{\left(- \int{1 d t} - \int{8 \cos{\left(t \right)} d t}\right)}}$$
$$$c=1$$$ kullanarak $$$\int c\, dt = c t$$$ sabit kuralını uygula:
$$- \int{8 \cos{\left(t \right)} d t} - {\color{red}{\int{1 d t}}} = - \int{8 \cos{\left(t \right)} d t} - {\color{red}{t}}$$
Sabit katsayı kuralı $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$'i $$$c=8$$$ ve $$$f{\left(t \right)} = \cos{\left(t \right)}$$$ ile uygula:
$$- t - {\color{red}{\int{8 \cos{\left(t \right)} d t}}} = - t - {\color{red}{\left(8 \int{\cos{\left(t \right)} d t}\right)}}$$
Kosinüsün integrali $$$\int{\cos{\left(t \right)} d t} = \sin{\left(t \right)}$$$:
$$- t - 8 {\color{red}{\int{\cos{\left(t \right)} d t}}} = - t - 8 {\color{red}{\sin{\left(t \right)}}}$$
Dolayısıyla,
$$\int{\left(- 8 \cos{\left(t \right)} - 1\right)d t} = - t - 8 \sin{\left(t \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(- 8 \cos{\left(t \right)} - 1\right)d t} = - t - 8 \sin{\left(t \right)}+C$$
Cevap
$$$\int \left(- 8 \cos{\left(t \right)} - 1\right)\, dt = \left(- t - 8 \sin{\left(t \right)}\right) + C$$$A