$$$- 3 \sin{\left(\frac{x}{3} \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$- 3 \sin{\left(\frac{x}{3} \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(- 3 \sin{\left(\frac{x}{3} \right)}\right)\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=-3$$$ ve $$$f{\left(x \right)} = \sin{\left(\frac{x}{3} \right)}$$$ ile uygula:

$${\color{red}{\int{\left(- 3 \sin{\left(\frac{x}{3} \right)}\right)d x}}} = {\color{red}{\left(- 3 \int{\sin{\left(\frac{x}{3} \right)} d x}\right)}}$$

$$$u=\frac{x}{3}$$$ olsun.

Böylece $$$du=\left(\frac{x}{3}\right)^{\prime }dx = \frac{dx}{3}$$$ (adımlar » görülebilir) ve $$$dx = 3 du$$$ elde ederiz.

İntegral şu hale gelir

$$- 3 {\color{red}{\int{\sin{\left(\frac{x}{3} \right)} d x}}} = - 3 {\color{red}{\int{3 \sin{\left(u \right)} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=3$$$ ve $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ile uygula:

$$- 3 {\color{red}{\int{3 \sin{\left(u \right)} d u}}} = - 3 {\color{red}{\left(3 \int{\sin{\left(u \right)} d u}\right)}}$$

Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- 9 {\color{red}{\int{\sin{\left(u \right)} d u}}} = - 9 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

Hatırlayın ki $$$u=\frac{x}{3}$$$:

$$9 \cos{\left({\color{red}{u}} \right)} = 9 \cos{\left({\color{red}{\left(\frac{x}{3}\right)}} \right)}$$

Dolayısıyla,

$$\int{\left(- 3 \sin{\left(\frac{x}{3} \right)}\right)d x} = 9 \cos{\left(\frac{x}{3} \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(- 3 \sin{\left(\frac{x}{3} \right)}\right)d x} = 9 \cos{\left(\frac{x}{3} \right)}+C$$

Cevap

$$$\int \left(- 3 \sin{\left(\frac{x}{3} \right)}\right)\, dx = 9 \cos{\left(\frac{x}{3} \right)} + C$$$A


Please try a new game Rotatly