$$$- \frac{3}{1 - 3 x}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(- \frac{3}{1 - 3 x}\right)\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=-3$$$ ve $$$f{\left(x \right)} = \frac{1}{1 - 3 x}$$$ ile uygula:
$${\color{red}{\int{\left(- \frac{3}{1 - 3 x}\right)d x}}} = {\color{red}{\left(- 3 \int{\frac{1}{1 - 3 x} d x}\right)}}$$
$$$u=1 - 3 x$$$ olsun.
Böylece $$$du=\left(1 - 3 x\right)^{\prime }dx = - 3 dx$$$ (adımlar » görülebilir) ve $$$dx = - \frac{du}{3}$$$ elde ederiz.
Dolayısıyla,
$$- 3 {\color{red}{\int{\frac{1}{1 - 3 x} d x}}} = - 3 {\color{red}{\int{\left(- \frac{1}{3 u}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=- \frac{1}{3}$$$ ve $$$f{\left(u \right)} = \frac{1}{u}$$$ ile uygula:
$$- 3 {\color{red}{\int{\left(- \frac{1}{3 u}\right)d u}}} = - 3 {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{3}\right)}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Hatırlayın ki $$$u=1 - 3 x$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\left(1 - 3 x\right)}}}\right| \right)}$$
Dolayısıyla,
$$\int{\left(- \frac{3}{1 - 3 x}\right)d x} = \ln{\left(\left|{3 x - 1}\right| \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(- \frac{3}{1 - 3 x}\right)d x} = \ln{\left(\left|{3 x - 1}\right| \right)}+C$$
Cevap
$$$\int \left(- \frac{3}{1 - 3 x}\right)\, dx = \ln\left(\left|{3 x - 1}\right|\right) + C$$$A