$$$- \frac{1}{\sqrt{16 - 4 x^{2}}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$- \frac{1}{\sqrt{16 - 4 x^{2}}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)\, dx$$$.

Çözüm

İntegranı sadeleştirin:

$${\color{red}{\int{\left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \sqrt{4 - x^{2}}}\right)d x}}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=- \frac{1}{2}$$$ ve $$$f{\left(x \right)} = \frac{1}{\sqrt{4 - x^{2}}}$$$ ile uygula:

$${\color{red}{\int{\left(- \frac{1}{2 \sqrt{4 - x^{2}}}\right)d x}}} = {\color{red}{\left(- \frac{\int{\frac{1}{\sqrt{4 - x^{2}}} d x}}{2}\right)}}$$

$$$x=2 \sin{\left(u \right)}$$$ olsun.

O halde $$$dx=\left(2 \sin{\left(u \right)}\right)^{\prime }du = 2 \cos{\left(u \right)} du$$$ (adımlar » görülebilir).

Ayrıca, buradan $$$u=\operatorname{asin}{\left(\frac{x}{2} \right)}$$$ elde edilir.

Dolayısıyla,

$$$\frac{1}{\sqrt{4 - x^{2}}} = \frac{1}{\sqrt{4 - 4 \sin^{2}{\left( u \right)}}}$$$

Özdeşliği kullanın: $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$

$$$\frac{1}{\sqrt{4 - 4 \sin^{2}{\left( u \right)}}}=\frac{1}{2 \sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{2 \sqrt{\cos^{2}{\left( u \right)}}}$$$

$$$\cos{\left( u \right)} \ge 0$$$ olduğunu varsayarsak, aşağıdakileri elde ederiz:

$$$\frac{1}{2 \sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{2 \cos{\left( u \right)}}$$$

O halde,

$$- \frac{{\color{red}{\int{\frac{1}{\sqrt{4 - x^{2}}} d x}}}}{2} = - \frac{{\color{red}{\int{1 d u}}}}{2}$$

$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:

$$- \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{{\color{red}{u}}}{2}$$

Hatırlayın ki $$$u=\operatorname{asin}{\left(\frac{x}{2} \right)}$$$:

$$- \frac{{\color{red}{u}}}{2} = - \frac{{\color{red}{\operatorname{asin}{\left(\frac{x}{2} \right)}}}}{2}$$

Dolayısıyla,

$$\int{\left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)d x} = - \frac{\operatorname{asin}{\left(\frac{x}{2} \right)}}{2}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)d x} = - \frac{\operatorname{asin}{\left(\frac{x}{2} \right)}}{2}+C$$

Cevap

$$$\int \left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)\, dx = - \frac{\operatorname{asin}{\left(\frac{x}{2} \right)}}{2} + C$$$A


Please try a new game Rotatly