$$$\frac{x^{2}}{x - 7}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{x^{2}}{x - 7}\, dx$$$.
Çözüm
Payın derecesi paydanın derecesinden küçük olmadığından, polinom uzun bölmesi uygulayın (adımlar » görülebilir):
$${\color{red}{\int{\frac{x^{2}}{x - 7} d x}}} = {\color{red}{\int{\left(x + 7 + \frac{49}{x - 7}\right)d x}}}$$
Her terimin integralini alın:
$${\color{red}{\int{\left(x + 7 + \frac{49}{x - 7}\right)d x}}} = {\color{red}{\left(\int{7 d x} + \int{x d x} + \int{\frac{49}{x - 7} d x}\right)}}$$
$$$c=7$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:
$$\int{x d x} + \int{\frac{49}{x - 7} d x} + {\color{red}{\int{7 d x}}} = \int{x d x} + \int{\frac{49}{x - 7} d x} + {\color{red}{\left(7 x\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=1$$$ ile uygulayın:
$$7 x + \int{\frac{49}{x - 7} d x} + {\color{red}{\int{x d x}}}=7 x + \int{\frac{49}{x - 7} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=7 x + \int{\frac{49}{x - 7} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=49$$$ ve $$$f{\left(x \right)} = \frac{1}{x - 7}$$$ ile uygula:
$$\frac{x^{2}}{2} + 7 x + {\color{red}{\int{\frac{49}{x - 7} d x}}} = \frac{x^{2}}{2} + 7 x + {\color{red}{\left(49 \int{\frac{1}{x - 7} d x}\right)}}$$
$$$u=x - 7$$$ olsun.
Böylece $$$du=\left(x - 7\right)^{\prime }dx = 1 dx$$$ (adımlar » görülebilir) ve $$$dx = du$$$ elde ederiz.
Dolayısıyla,
$$\frac{x^{2}}{2} + 7 x + 49 {\color{red}{\int{\frac{1}{x - 7} d x}}} = \frac{x^{2}}{2} + 7 x + 49 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{x^{2}}{2} + 7 x + 49 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{x^{2}}{2} + 7 x + 49 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Hatırlayın ki $$$u=x - 7$$$:
$$\frac{x^{2}}{2} + 7 x + 49 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{x^{2}}{2} + 7 x + 49 \ln{\left(\left|{{\color{red}{\left(x - 7\right)}}}\right| \right)}$$
Dolayısıyla,
$$\int{\frac{x^{2}}{x - 7} d x} = \frac{x^{2}}{2} + 7 x + 49 \ln{\left(\left|{x - 7}\right| \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{x^{2}}{x - 7} d x} = \frac{x^{2}}{2} + 7 x + 49 \ln{\left(\left|{x - 7}\right| \right)}+C$$
Cevap
$$$\int \frac{x^{2}}{x - 7}\, dx = \left(\frac{x^{2}}{2} + 7 x + 49 \ln\left(\left|{x - 7}\right|\right)\right) + C$$$A