$$$x$$$ değişkenine göre $$$\ln\left(x^{7}\right) - \ln\left(y^{3}\right)$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$\ln\left(x^{7}\right) - \ln\left(y^{3}\right)$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(7 \ln\left(x\right) - 3 \ln\left(y\right)\right)\, dx$$$.

Çözüm

Girdi yeniden yazıldı: $$$\int{\left(\ln{\left(x^{7} \right)} - \ln{\left(y^{3} \right)}\right)d x}=\int{\left(7 \ln{\left(x \right)} - 3 \ln{\left(y \right)}\right)d x}$$$.

Her terimin integralini alın:

$${\color{red}{\int{\left(7 \ln{\left(x \right)} - 3 \ln{\left(y \right)}\right)d x}}} = {\color{red}{\left(\int{7 \ln{\left(x \right)} d x} - \int{3 \ln{\left(y \right)} d x}\right)}}$$

$$$c=3 \ln{\left(y \right)}$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$\int{7 \ln{\left(x \right)} d x} - {\color{red}{\int{3 \ln{\left(y \right)} d x}}} = \int{7 \ln{\left(x \right)} d x} - {\color{red}{\left(3 x \ln{\left(y \right)}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=7$$$ ve $$$f{\left(x \right)} = \ln{\left(x \right)}$$$ ile uygula:

$$- 3 x \ln{\left(y \right)} + {\color{red}{\int{7 \ln{\left(x \right)} d x}}} = - 3 x \ln{\left(y \right)} + {\color{red}{\left(7 \int{\ln{\left(x \right)} d x}\right)}}$$

$$$\int{\ln{\left(x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=\ln{\left(x \right)}$$$ ve $$$\operatorname{dv}=dx$$$ olsun.

O halde $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d x}=x$$$ (adımlar için bkz. »).

Dolayısıyla,

$$- 3 x \ln{\left(y \right)} + 7 {\color{red}{\int{\ln{\left(x \right)} d x}}}=- 3 x \ln{\left(y \right)} + 7 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=- 3 x \ln{\left(y \right)} + 7 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$7 x \ln{\left(x \right)} - 3 x \ln{\left(y \right)} - 7 {\color{red}{\int{1 d x}}} = 7 x \ln{\left(x \right)} - 3 x \ln{\left(y \right)} - 7 {\color{red}{x}}$$

Dolayısıyla,

$$\int{\left(7 \ln{\left(x \right)} - 3 \ln{\left(y \right)}\right)d x} = 7 x \ln{\left(x \right)} - 3 x \ln{\left(y \right)} - 7 x$$

Sadeleştirin:

$$\int{\left(7 \ln{\left(x \right)} - 3 \ln{\left(y \right)}\right)d x} = x \left(7 \ln{\left(x \right)} - 3 \ln{\left(y \right)} - 7\right)$$

İntegrasyon sabitini ekleyin:

$$\int{\left(7 \ln{\left(x \right)} - 3 \ln{\left(y \right)}\right)d x} = x \left(7 \ln{\left(x \right)} - 3 \ln{\left(y \right)} - 7\right)+C$$

Cevap

$$$\int \left(7 \ln\left(x\right) - 3 \ln\left(y\right)\right)\, dx = x \left(7 \ln\left(x\right) - 3 \ln\left(y\right) - 7\right) + C$$$A


Please try a new game Rotatly