$$$\frac{\ln\left(- x\right)}{2}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{\ln\left(- x\right)}{2}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = \ln{\left(- x \right)}$$$ ile uygula:
$${\color{red}{\int{\frac{\ln{\left(- x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\ln{\left(- x \right)} d x}}{2}\right)}}$$
$$$u=- x$$$ olsun.
Böylece $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (adımlar » görülebilir) ve $$$dx = - du$$$ elde ederiz.
O halde,
$$\frac{{\color{red}{\int{\ln{\left(- x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-1$$$ ve $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ ile uygula:
$$\frac{{\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{\ln{\left(u \right)} d u}\right)}}}{2}$$
$$$\int{\ln{\left(u \right)} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$ kullanın.
$$$\operatorname{g}=\ln{\left(u \right)}$$$ ve $$$\operatorname{dv}=du$$$ olsun.
O halde $$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d u}=u$$$ (adımlar için bkz. »).
İntegral şu şekilde yeniden yazılabilir:
$$- \frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{2}=- \frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{2}=- \frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{2}$$
$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:
$$- \frac{u \ln{\left(u \right)}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{u \ln{\left(u \right)}}{2} + \frac{{\color{red}{u}}}{2}$$
Hatırlayın ki $$$u=- x$$$:
$$\frac{{\color{red}{u}}}{2} - \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{2} = \frac{{\color{red}{\left(- x\right)}}}{2} - \frac{{\color{red}{\left(- x\right)}} \ln{\left({\color{red}{\left(- x\right)}} \right)}}{2}$$
Dolayısıyla,
$$\int{\frac{\ln{\left(- x \right)}}{2} d x} = \frac{x \ln{\left(- x \right)}}{2} - \frac{x}{2}$$
Sadeleştirin:
$$\int{\frac{\ln{\left(- x \right)}}{2} d x} = \frac{x \left(\ln{\left(- x \right)} - 1\right)}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{\ln{\left(- x \right)}}{2} d x} = \frac{x \left(\ln{\left(- x \right)} - 1\right)}{2}+C$$
Cevap
$$$\int \frac{\ln\left(- x\right)}{2}\, dx = \frac{x \left(\ln\left(- x\right) - 1\right)}{2} + C$$$A