$$$\frac{\tan^{2}{\left(x \right)}}{2}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{\tan^{2}{\left(x \right)}}{2}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = \tan^{2}{\left(x \right)}$$$ ile uygula:
$${\color{red}{\int{\frac{\tan^{2}{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\tan^{2}{\left(x \right)} d x}}{2}\right)}}$$
$$$u=\tan{\left(x \right)}$$$ olsun.
O halde $$$x=\operatorname{atan}{\left(u \right)}$$$ ve $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (adımlar » görülebilir).
Dolayısıyla,
$$\frac{{\color{red}{\int{\tan^{2}{\left(x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}}{2}$$
Kesri yeniden yazın ve parçalara ayırın:
$$\frac{{\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}}{2} = \frac{{\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{2}$$
Her terimin integralini alın:
$$\frac{{\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{2} = \frac{{\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}}{2}$$
$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:
$$- \frac{\int{\frac{1}{u^{2} + 1} d u}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{\int{\frac{1}{u^{2} + 1} d u}}{2} + \frac{{\color{red}{u}}}{2}$$
$$$\frac{1}{u^{2} + 1}$$$'nin integrali $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{u}{2} - \frac{{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} = \frac{u}{2} - \frac{{\color{red}{\operatorname{atan}{\left(u \right)}}}}{2}$$
Hatırlayın ki $$$u=\tan{\left(x \right)}$$$:
$$- \frac{\operatorname{atan}{\left({\color{red}{u}} \right)}}{2} + \frac{{\color{red}{u}}}{2} = - \frac{\operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)}}{2} + \frac{{\color{red}{\tan{\left(x \right)}}}}{2}$$
Dolayısıyla,
$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = \frac{\tan{\left(x \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left(x \right)} \right)}}{2}$$
Sadeleştirin:
$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = - \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = - \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}+C$$
Cevap
$$$\int \frac{\tan^{2}{\left(x \right)}}{2}\, dx = \left(- \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}\right) + C$$$A