$$$t$$$ değişkenine göre $$$\frac{\ln^{2}\left(x\right)}{x}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$t$$$ değişkenine göre $$$\frac{\ln^{2}\left(x\right)}{x}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt$$$.

Çözüm

$$$c=\frac{\ln{\left(x \right)}^{2}}{x}$$$ kullanarak $$$\int c\, dt = c t$$$ sabit kuralını uygula:

$${\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x} d t}}} = {\color{red}{\frac{t \ln{\left(x \right)}^{2}}{x}}}$$

Dolayısıyla,

$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}+C$$

Cevap

$$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt = \frac{t \ln^{2}\left(x\right)}{x} + C$$$A


Please try a new game Rotatly