$$$\frac{\sqrt{2} x^{\frac{5}{2}}}{2}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{\sqrt{2} x^{\frac{5}{2}}}{2}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{\sqrt{2}}{2}$$$ ve $$$f{\left(x \right)} = x^{\frac{5}{2}}$$$ ile uygula:
$${\color{red}{\int{\frac{\sqrt{2} x^{\frac{5}{2}}}{2} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \int{x^{\frac{5}{2}} d x}}{2}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=\frac{5}{2}$$$ ile uygulayın:
$$\frac{\sqrt{2} {\color{red}{\int{x^{\frac{5}{2}} d x}}}}{2}=\frac{\sqrt{2} {\color{red}{\frac{x^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}}{2}=\frac{\sqrt{2} {\color{red}{\left(\frac{2 x^{\frac{7}{2}}}{7}\right)}}}{2}$$
Dolayısıyla,
$$\int{\frac{\sqrt{2} x^{\frac{5}{2}}}{2} d x} = \frac{\sqrt{2} x^{\frac{7}{2}}}{7}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{\sqrt{2} x^{\frac{5}{2}}}{2} d x} = \frac{\sqrt{2} x^{\frac{7}{2}}}{7}+C$$
Cevap
$$$\int \frac{\sqrt{2} x^{\frac{5}{2}}}{2}\, dx = \frac{\sqrt{2} x^{\frac{7}{2}}}{7} + C$$$A