$$$\frac{\ln^{2}\left(x^{2}\right)}{x}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{\ln^{2}\left(x^{2}\right)}{x}\, dx$$$.
Çözüm
Girdi yeniden yazıldı: $$$\int{\frac{\ln{\left(x^{2} \right)}^{2}}{x} d x}=\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x}$$$.
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=4$$$ ve $$$f{\left(x \right)} = \frac{\ln{\left(x \right)}^{2}}{x}$$$ ile uygula:
$${\color{red}{\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x}}} = {\color{red}{\left(4 \int{\frac{\ln{\left(x \right)}^{2}}{x} d x}\right)}}$$
$$$u=\ln{\left(x \right)}$$$ olsun.
Böylece $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (adımlar » görülebilir) ve $$$\frac{dx}{x} = du$$$ elde ederiz.
Dolayısıyla,
$$4 {\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x} d x}}} = 4 {\color{red}{\int{u^{2} d u}}}$$
Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:
$$4 {\color{red}{\int{u^{2} d u}}}=4 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=4 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Hatırlayın ki $$$u=\ln{\left(x \right)}$$$:
$$\frac{4 {\color{red}{u}}^{3}}{3} = \frac{4 {\color{red}{\ln{\left(x \right)}}}^{3}}{3}$$
Dolayısıyla,
$$\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x} = \frac{4 \ln{\left(x \right)}^{3}}{3}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x} = \frac{4 \ln{\left(x \right)}^{3}}{3}+C$$
Cevap
$$$\int \frac{\ln^{2}\left(x^{2}\right)}{x}\, dx = \frac{4 \ln^{3}\left(x\right)}{3} + C$$$A