$$$\frac{5}{\sqrt{9 - 4 x^{2}}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{5}{\sqrt{9 - 4 x^{2}}}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=5$$$ ve $$$f{\left(x \right)} = \frac{1}{\sqrt{9 - 4 x^{2}}}$$$ ile uygula:
$${\color{red}{\int{\frac{5}{\sqrt{9 - 4 x^{2}}} d x}}} = {\color{red}{\left(5 \int{\frac{1}{\sqrt{9 - 4 x^{2}}} d x}\right)}}$$
$$$x=\frac{3 \sin{\left(u \right)}}{2}$$$ olsun.
O halde $$$dx=\left(\frac{3 \sin{\left(u \right)}}{2}\right)^{\prime }du = \frac{3 \cos{\left(u \right)}}{2} du$$$ (adımlar » görülebilir).
Ayrıca, buradan $$$u=\operatorname{asin}{\left(\frac{2 x}{3} \right)}$$$ elde edilir.
Dolayısıyla,
$$$\frac{1}{\sqrt{9 - 4 x^{2}}} = \frac{1}{\sqrt{9 - 9 \sin^{2}{\left( u \right)}}}$$$
Özdeşliği kullanın: $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$
$$$\frac{1}{\sqrt{9 - 9 \sin^{2}{\left( u \right)}}}=\frac{1}{3 \sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{3 \sqrt{\cos^{2}{\left( u \right)}}}$$$
$$$\cos{\left( u \right)} \ge 0$$$ olduğunu varsayarsak, aşağıdakileri elde ederiz:
$$$\frac{1}{3 \sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{3 \cos{\left( u \right)}}$$$
İntegral şu şekilde yeniden yazılabilir
$$5 {\color{red}{\int{\frac{1}{\sqrt{9 - 4 x^{2}}} d x}}} = 5 {\color{red}{\int{\frac{1}{2} d u}}}$$
$$$c=\frac{1}{2}$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:
$$5 {\color{red}{\int{\frac{1}{2} d u}}} = 5 {\color{red}{\left(\frac{u}{2}\right)}}$$
Hatırlayın ki $$$u=\operatorname{asin}{\left(\frac{2 x}{3} \right)}$$$:
$$\frac{5 {\color{red}{u}}}{2} = \frac{5 {\color{red}{\operatorname{asin}{\left(\frac{2 x}{3} \right)}}}}{2}$$
Dolayısıyla,
$$\int{\frac{5}{\sqrt{9 - 4 x^{2}}} d x} = \frac{5 \operatorname{asin}{\left(\frac{2 x}{3} \right)}}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{5}{\sqrt{9 - 4 x^{2}}} d x} = \frac{5 \operatorname{asin}{\left(\frac{2 x}{3} \right)}}{2}+C$$
Cevap
$$$\int \frac{5}{\sqrt{9 - 4 x^{2}}}\, dx = \frac{5 \operatorname{asin}{\left(\frac{2 x}{3} \right)}}{2} + C$$$A