$$$- 5 x^{9} + 3 x^{5}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(- 5 x^{9} + 3 x^{5}\right)\, dx$$$.
Çözüm
Her terimin integralini alın:
$${\color{red}{\int{\left(- 5 x^{9} + 3 x^{5}\right)d x}}} = {\color{red}{\left(\int{3 x^{5} d x} - \int{5 x^{9} d x}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=5$$$ ve $$$f{\left(x \right)} = x^{9}$$$ ile uygula:
$$\int{3 x^{5} d x} - {\color{red}{\int{5 x^{9} d x}}} = \int{3 x^{5} d x} - {\color{red}{\left(5 \int{x^{9} d x}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=9$$$ ile uygulayın:
$$\int{3 x^{5} d x} - 5 {\color{red}{\int{x^{9} d x}}}=\int{3 x^{5} d x} - 5 {\color{red}{\frac{x^{1 + 9}}{1 + 9}}}=\int{3 x^{5} d x} - 5 {\color{red}{\left(\frac{x^{10}}{10}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=3$$$ ve $$$f{\left(x \right)} = x^{5}$$$ ile uygula:
$$- \frac{x^{10}}{2} + {\color{red}{\int{3 x^{5} d x}}} = - \frac{x^{10}}{2} + {\color{red}{\left(3 \int{x^{5} d x}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=5$$$ ile uygulayın:
$$- \frac{x^{10}}{2} + 3 {\color{red}{\int{x^{5} d x}}}=- \frac{x^{10}}{2} + 3 {\color{red}{\frac{x^{1 + 5}}{1 + 5}}}=- \frac{x^{10}}{2} + 3 {\color{red}{\left(\frac{x^{6}}{6}\right)}}$$
Dolayısıyla,
$$\int{\left(- 5 x^{9} + 3 x^{5}\right)d x} = - \frac{x^{10}}{2} + \frac{x^{6}}{2}$$
Sadeleştirin:
$$\int{\left(- 5 x^{9} + 3 x^{5}\right)d x} = \frac{x^{6} \left(1 - x^{4}\right)}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(- 5 x^{9} + 3 x^{5}\right)d x} = \frac{x^{6} \left(1 - x^{4}\right)}{2}+C$$
Cevap
$$$\int \left(- 5 x^{9} + 3 x^{5}\right)\, dx = \frac{x^{6} \left(1 - x^{4}\right)}{2} + C$$$A