$$$\frac{3 - 4 x}{x^{2} - 48 x}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{3 - 4 x}{x^{2} - 48 x}\, dx$$$.
Çözüm
Doğrusal terimi $$$3 - 4 x=- 4 x\color{red}{+96-96}+3=- 4 x+96-93$$$ olarak yeniden yazın ve ifadeyi ayırın:
$${\color{red}{\int{\frac{3 - 4 x}{x^{2} - 48 x} d x}}} = {\color{red}{\int{\left(\frac{96 - 4 x}{x^{2} - 48 x} - \frac{93}{x^{2} - 48 x}\right)d x}}}$$
Her terimin integralini alın:
$${\color{red}{\int{\left(\frac{96 - 4 x}{x^{2} - 48 x} - \frac{93}{x^{2} - 48 x}\right)d x}}} = {\color{red}{\left(\int{\frac{96 - 4 x}{x^{2} - 48 x} d x} + \int{\left(- \frac{93}{x^{2} - 48 x}\right)d x}\right)}}$$
$$$u=x^{2} - 48 x$$$ olsun.
Böylece $$$du=\left(x^{2} - 48 x\right)^{\prime }dx = \left(2 x - 48\right) dx$$$ (adımlar » görülebilir) ve $$$\left(2 x - 48\right) dx = du$$$ elde ederiz.
İntegral şu hale gelir
$$\int{\left(- \frac{93}{x^{2} - 48 x}\right)d x} + {\color{red}{\int{\frac{96 - 4 x}{x^{2} - 48 x} d x}}} = \int{\left(- \frac{93}{x^{2} - 48 x}\right)d x} + {\color{red}{\int{\left(- \frac{2}{u}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-2$$$ ve $$$f{\left(u \right)} = \frac{1}{u}$$$ ile uygula:
$$\int{\left(- \frac{93}{x^{2} - 48 x}\right)d x} + {\color{red}{\int{\left(- \frac{2}{u}\right)d u}}} = \int{\left(- \frac{93}{x^{2} - 48 x}\right)d x} + {\color{red}{\left(- 2 \int{\frac{1}{u} d u}\right)}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\int{\left(- \frac{93}{x^{2} - 48 x}\right)d x} - 2 {\color{red}{\int{\frac{1}{u} d u}}} = \int{\left(- \frac{93}{x^{2} - 48 x}\right)d x} - 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Hatırlayın ki $$$u=x^{2} - 48 x$$$:
$$- 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \int{\left(- \frac{93}{x^{2} - 48 x}\right)d x} = - 2 \ln{\left(\left|{{\color{red}{\left(x^{2} - 48 x\right)}}}\right| \right)} + \int{\left(- \frac{93}{x^{2} - 48 x}\right)d x}$$
İntegranı sadeleştirin:
$$- 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} + {\color{red}{\int{\left(- \frac{93}{x^{2} - 48 x}\right)d x}}} = - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} + {\color{red}{\int{\left(- \frac{93}{x \left(x - 48\right)}\right)d x}}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=-93$$$ ve $$$f{\left(x \right)} = \frac{1}{x \left(x - 48\right)}$$$ ile uygula:
$$- 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} + {\color{red}{\int{\left(- \frac{93}{x \left(x - 48\right)}\right)d x}}} = - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} + {\color{red}{\left(- 93 \int{\frac{1}{x \left(x - 48\right)} d x}\right)}}$$
Kısmi kesirlere ayrıştırma yapın (adımlar » görülebilir):
$$- 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - 93 {\color{red}{\int{\frac{1}{x \left(x - 48\right)} d x}}} = - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - 93 {\color{red}{\int{\left(\frac{1}{48 \left(x - 48\right)} - \frac{1}{48 x}\right)d x}}}$$
Her terimin integralini alın:
$$- 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - 93 {\color{red}{\int{\left(\frac{1}{48 \left(x - 48\right)} - \frac{1}{48 x}\right)d x}}} = - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - 93 {\color{red}{\left(- \int{\frac{1}{48 x} d x} + \int{\frac{1}{48 \left(x - 48\right)} d x}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{48}$$$ ve $$$f{\left(x \right)} = \frac{1}{x}$$$ ile uygula:
$$- 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - 93 \int{\frac{1}{48 \left(x - 48\right)} d x} + 93 {\color{red}{\int{\frac{1}{48 x} d x}}} = - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - 93 \int{\frac{1}{48 \left(x - 48\right)} d x} + 93 {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{48}\right)}}$$
$$$\frac{1}{x}$$$'nin integrali $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - 93 \int{\frac{1}{48 \left(x - 48\right)} d x} + \frac{31 {\color{red}{\int{\frac{1}{x} d x}}}}{16} = - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - 93 \int{\frac{1}{48 \left(x - 48\right)} d x} + \frac{31 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{16}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{48}$$$ ve $$$f{\left(x \right)} = \frac{1}{x - 48}$$$ ile uygula:
$$\frac{31 \ln{\left(\left|{x}\right| \right)}}{16} - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - 93 {\color{red}{\int{\frac{1}{48 \left(x - 48\right)} d x}}} = \frac{31 \ln{\left(\left|{x}\right| \right)}}{16} - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - 93 {\color{red}{\left(\frac{\int{\frac{1}{x - 48} d x}}{48}\right)}}$$
$$$u=x - 48$$$ olsun.
Böylece $$$du=\left(x - 48\right)^{\prime }dx = 1 dx$$$ (adımlar » görülebilir) ve $$$dx = du$$$ elde ederiz.
Dolayısıyla,
$$\frac{31 \ln{\left(\left|{x}\right| \right)}}{16} - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - \frac{31 {\color{red}{\int{\frac{1}{x - 48} d x}}}}{16} = \frac{31 \ln{\left(\left|{x}\right| \right)}}{16} - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - \frac{31 {\color{red}{\int{\frac{1}{u} d u}}}}{16}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{31 \ln{\left(\left|{x}\right| \right)}}{16} - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - \frac{31 {\color{red}{\int{\frac{1}{u} d u}}}}{16} = \frac{31 \ln{\left(\left|{x}\right| \right)}}{16} - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - \frac{31 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{16}$$
Hatırlayın ki $$$u=x - 48$$$:
$$\frac{31 \ln{\left(\left|{x}\right| \right)}}{16} - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - \frac{31 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{16} = \frac{31 \ln{\left(\left|{x}\right| \right)}}{16} - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)} - \frac{31 \ln{\left(\left|{{\color{red}{\left(x - 48\right)}}}\right| \right)}}{16}$$
Dolayısıyla,
$$\int{\frac{3 - 4 x}{x^{2} - 48 x} d x} = \frac{31 \ln{\left(\left|{x}\right| \right)}}{16} - \frac{31 \ln{\left(\left|{x - 48}\right| \right)}}{16} - 2 \ln{\left(\left|{x^{2} - 48 x}\right| \right)}$$
Sadeleştirin:
$$\int{\frac{3 - 4 x}{x^{2} - 48 x} d x} = \frac{31 \ln{\left(\left|{x}\right| \right)}}{16} - 2 \ln{\left(\left|{x \left(x - 48\right)}\right| \right)} - \frac{31 \ln{\left(\left|{x - 48}\right| \right)}}{16}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{3 - 4 x}{x^{2} - 48 x} d x} = \frac{31 \ln{\left(\left|{x}\right| \right)}}{16} - 2 \ln{\left(\left|{x \left(x - 48\right)}\right| \right)} - \frac{31 \ln{\left(\left|{x - 48}\right| \right)}}{16}+C$$
Cevap
$$$\int \frac{3 - 4 x}{x^{2} - 48 x}\, dx = \left(\frac{31 \ln\left(\left|{x}\right|\right)}{16} - 2 \ln\left(\left|{x \left(x - 48\right)}\right|\right) - \frac{31 \ln\left(\left|{x - 48}\right|\right)}{16}\right) + C$$$A