$$$\left(\frac{3}{4}\right)^{x^{2}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\left(\frac{3}{4}\right)^{x^{2}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(\frac{3}{4}\right)^{x^{2}}\, dx$$$.

Çözüm

Tabanı değiştir:

$${\color{red}{\int{\left(\frac{3}{4}\right)^{x^{2}} d x}}} = {\color{red}{\int{e^{x^{2} \ln{\left(\frac{3}{4} \right)}} d x}}}$$

$$$u=x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}$$$ olsun.

Böylece $$$du=\left(x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}\right)^{\prime }dx = \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}} dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$$ elde ederiz.

Dolayısıyla,

$${\color{red}{\int{e^{x^{2} \ln{\left(\frac{3}{4} \right)}} d x}}} = {\color{red}{\int{\frac{e^{- u^{2}}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$$ ve $$$f{\left(u \right)} = e^{- u^{2}}$$$ ile uygula:

$${\color{red}{\int{\frac{e^{- u^{2}}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}} d u}}} = {\color{red}{\frac{\int{e^{- u^{2}} d u}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}}}$$

Bu integralin (Hata Fonksiyonu) kapalı biçimli bir ifadesi yok:

$$\frac{{\color{red}{\int{e^{- u^{2}} d u}}}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$

Hatırlayın ki $$$u=x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}$$$:

$$\frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2 \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}} = \frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}} \right)}}{2 \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$

Dolayısıyla,

$$\int{\left(\frac{3}{4}\right)^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}} \right)}}{2 \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(\frac{3}{4}\right)^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}} \right)}}{2 \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}+C$$

Cevap

$$$\int \left(\frac{3}{4}\right)^{x^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)} \right)}}{2 \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)}} + C$$$A


Please try a new game Rotatly