$$$\frac{1003605945944011425233769242881280649744658171441 t}{1000000000000000000000000000000000000000000000000}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{1003605945944011425233769242881280649744658171441 t}{1000000000000000000000000000000000000000000000000}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{1003605945944011425233769242881280649744658171441 t}{1000000000000000000000000000000000000000000000000}\, dt.$$$

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$'i $$$c=\frac{1003605945944011425233769242881280649744658171441}{1000000000000000000000000000000000000000000000000}$$$ ve $$$f{\left(t \right)} = t$$$ ile uygula:

$${\color{red}{\int{\frac{1003605945944011425233769242881280649744658171441 t}{1000000000000000000000000000000000000000000000000} d t}}} = {\color{red}{\left(\frac{1003605945944011425233769242881280649744658171441 \int{t d t}}{1000000000000000000000000000000000000000000000000}\right)}}$$

Kuvvet kuralını $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=1$$$ ile uygulayın:

$$\frac{1003605945944011425233769242881280649744658171441 {\color{red}{\int{t d t}}}}{1000000000000000000000000000000000000000000000000}=\frac{1003605945944011425233769242881280649744658171441 {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}}{1000000000000000000000000000000000000000000000000}=\frac{1003605945944011425233769242881280649744658171441 {\color{red}{\left(\frac{t^{2}}{2}\right)}}}{1000000000000000000000000000000000000000000000000}$$

Dolayısıyla,

$$\int{\frac{1003605945944011425233769242881280649744658171441 t}{1000000000000000000000000000000000000000000000000} d t} = \frac{1003605945944011425233769242881280649744658171441 t^{2}}{2000000000000000000000000000000000000000000000000}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{1003605945944011425233769242881280649744658171441 t}{1000000000000000000000000000000000000000000000000} d t} = \frac{1003605945944011425233769242881280649744658171441 t^{2}}{2000000000000000000000000000000000000000000000000}+C$$

Cevap

$$$\int \frac{1003605945944011425233769242881280649744658171441 t}{1000000000000000000000000000000000000000000000000}\, dt = \frac{1003605945944011425233769242881280649744658171441 t^{2}}{2000000000000000000000000000000000000000000000000} + C$$$A


Please try a new game Rotatly