$$$\left(1 - x\right)^{2}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(1 - x\right)^{2}\, dx$$$.
Çözüm
$$$u=1 - x$$$ olsun.
Böylece $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (adımlar » görülebilir) ve $$$dx = - du$$$ elde ederiz.
İntegral şu hale gelir
$${\color{red}{\int{\left(1 - x\right)^{2} d x}}} = {\color{red}{\int{\left(- u^{2}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-1$$$ ve $$$f{\left(u \right)} = u^{2}$$$ ile uygula:
$${\color{red}{\int{\left(- u^{2}\right)d u}}} = {\color{red}{\left(- \int{u^{2} d u}\right)}}$$
Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:
$$- {\color{red}{\int{u^{2} d u}}}=- {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Hatırlayın ki $$$u=1 - x$$$:
$$- \frac{{\color{red}{u}}^{3}}{3} = - \frac{{\color{red}{\left(1 - x\right)}}^{3}}{3}$$
Dolayısıyla,
$$\int{\left(1 - x\right)^{2} d x} = - \frac{\left(1 - x\right)^{3}}{3}$$
Sadeleştirin:
$$\int{\left(1 - x\right)^{2} d x} = \frac{\left(x - 1\right)^{3}}{3}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(1 - x\right)^{2} d x} = \frac{\left(x - 1\right)^{3}}{3}+C$$
Cevap
$$$\int \left(1 - x\right)^{2}\, dx = \frac{\left(x - 1\right)^{3}}{3} + C$$$A