$$$- 6 x^{6} - 16$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$- 6 x^{6} - 16$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(- 6 x^{6} - 16\right)\, dx$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(- 6 x^{6} - 16\right)d x}}} = {\color{red}{\left(- \int{16 d x} - \int{6 x^{6} d x}\right)}}$$

$$$c=16$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$- \int{6 x^{6} d x} - {\color{red}{\int{16 d x}}} = - \int{6 x^{6} d x} - {\color{red}{\left(16 x\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=6$$$ ve $$$f{\left(x \right)} = x^{6}$$$ ile uygula:

$$- 16 x - {\color{red}{\int{6 x^{6} d x}}} = - 16 x - {\color{red}{\left(6 \int{x^{6} d x}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=6$$$ ile uygulayın:

$$- 16 x - 6 {\color{red}{\int{x^{6} d x}}}=- 16 x - 6 {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=- 16 x - 6 {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$

Dolayısıyla,

$$\int{\left(- 6 x^{6} - 16\right)d x} = - \frac{6 x^{7}}{7} - 16 x$$

İntegrasyon sabitini ekleyin:

$$\int{\left(- 6 x^{6} - 16\right)d x} = - \frac{6 x^{7}}{7} - 16 x+C$$

Cevap

$$$\int \left(- 6 x^{6} - 16\right)\, dx = \left(- \frac{6 x^{7}}{7} - 16 x\right) + C$$$A


Please try a new game Rotatly