$$$- 3 x^{21} \left(x - 4\right)$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$- 3 x^{21} \left(x - 4\right)$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(- 3 x^{21} \left(x - 4\right)\right)\, dx$$$.

Çözüm

Girdi yeniden yazıldı: $$$\int{\left(- 3 x^{21} \left(x - 4\right)\right)d x}=\int{x^{21} \left(12 - 3 x\right) d x}$$$.

İntegranı sadeleştirin:

$${\color{red}{\int{x^{21} \left(12 - 3 x\right) d x}}} = {\color{red}{\int{3 x^{21} \left(4 - x\right) d x}}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=3$$$ ve $$$f{\left(x \right)} = x^{21} \left(4 - x\right)$$$ ile uygula:

$${\color{red}{\int{3 x^{21} \left(4 - x\right) d x}}} = {\color{red}{\left(3 \int{x^{21} \left(4 - x\right) d x}\right)}}$$

Expand the expression:

$$3 {\color{red}{\int{x^{21} \left(4 - x\right) d x}}} = 3 {\color{red}{\int{\left(- x^{22} + 4 x^{21}\right)d x}}}$$

Her terimin integralini alın:

$$3 {\color{red}{\int{\left(- x^{22} + 4 x^{21}\right)d x}}} = 3 {\color{red}{\left(\int{4 x^{21} d x} - \int{x^{22} d x}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=22$$$ ile uygulayın:

$$3 \int{4 x^{21} d x} - 3 {\color{red}{\int{x^{22} d x}}}=3 \int{4 x^{21} d x} - 3 {\color{red}{\frac{x^{1 + 22}}{1 + 22}}}=3 \int{4 x^{21} d x} - 3 {\color{red}{\left(\frac{x^{23}}{23}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=4$$$ ve $$$f{\left(x \right)} = x^{21}$$$ ile uygula:

$$- \frac{3 x^{23}}{23} + 3 {\color{red}{\int{4 x^{21} d x}}} = - \frac{3 x^{23}}{23} + 3 {\color{red}{\left(4 \int{x^{21} d x}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=21$$$ ile uygulayın:

$$- \frac{3 x^{23}}{23} + 12 {\color{red}{\int{x^{21} d x}}}=- \frac{3 x^{23}}{23} + 12 {\color{red}{\frac{x^{1 + 21}}{1 + 21}}}=- \frac{3 x^{23}}{23} + 12 {\color{red}{\left(\frac{x^{22}}{22}\right)}}$$

Dolayısıyla,

$$\int{x^{21} \left(12 - 3 x\right) d x} = - \frac{3 x^{23}}{23} + \frac{6 x^{22}}{11}$$

Sadeleştirin:

$$\int{x^{21} \left(12 - 3 x\right) d x} = \frac{3 x^{22} \left(46 - 11 x\right)}{253}$$

İntegrasyon sabitini ekleyin:

$$\int{x^{21} \left(12 - 3 x\right) d x} = \frac{3 x^{22} \left(46 - 11 x\right)}{253}+C$$

Cevap

$$$\int \left(- 3 x^{21} \left(x - 4\right)\right)\, dx = \frac{3 x^{22} \left(46 - 11 x\right)}{253} + C$$$A


Please try a new game Rotatly