$$$\frac{t^{3} - 1}{t}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{t^{3} - 1}{t}\, dt$$$.
Çözüm
Expand the expression:
$${\color{red}{\int{\frac{t^{3} - 1}{t} d t}}} = {\color{red}{\int{\left(t^{2} - \frac{1}{t}\right)d t}}}$$
Her terimin integralini alın:
$${\color{red}{\int{\left(t^{2} - \frac{1}{t}\right)d t}}} = {\color{red}{\left(- \int{\frac{1}{t} d t} + \int{t^{2} d t}\right)}}$$
Kuvvet kuralını $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:
$$- \int{\frac{1}{t} d t} + {\color{red}{\int{t^{2} d t}}}=- \int{\frac{1}{t} d t} + {\color{red}{\frac{t^{1 + 2}}{1 + 2}}}=- \int{\frac{1}{t} d t} + {\color{red}{\left(\frac{t^{3}}{3}\right)}}$$
$$$\frac{1}{t}$$$'nin integrali $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:
$$\frac{t^{3}}{3} - {\color{red}{\int{\frac{1}{t} d t}}} = \frac{t^{3}}{3} - {\color{red}{\ln{\left(\left|{t}\right| \right)}}}$$
Dolayısıyla,
$$\int{\frac{t^{3} - 1}{t} d t} = \frac{t^{3}}{3} - \ln{\left(\left|{t}\right| \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{t^{3} - 1}{t} d t} = \frac{t^{3}}{3} - \ln{\left(\left|{t}\right| \right)}+C$$
Cevap
$$$\int \frac{t^{3} - 1}{t}\, dt = \left(\frac{t^{3}}{3} - \ln\left(\left|{t}\right|\right)\right) + C$$$A