$$$x$$$ değişkenine göre $$$\frac{\cos{\left(x \right)}}{\cos{\left(\alpha + x \right)}}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$\frac{\cos{\left(x \right)}}{\cos{\left(\alpha + x \right)}}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\cos{\left(x \right)}}{\cos{\left(\alpha + x \right)}}\, dx$$$.

Çözüm

Integrand fonksiyonunu yeniden yazın:

$${\color{red}{\int{\frac{\cos{\left(x \right)}}{\cos{\left(\alpha + x \right)}} d x}}} = {\color{red}{\int{\frac{\cos{\left(x \right)}}{- \sin{\left(\alpha \right)} \sin{\left(x \right)} + \cos{\left(\alpha \right)} \cos{\left(x \right)}} d x}}}$$

Payı yeniden yazın ve kesri ayırın:

$${\color{red}{\int{\frac{\cos{\left(x \right)}}{- \sin{\left(\alpha \right)} \sin{\left(x \right)} + \cos{\left(\alpha \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} - \frac{\left(- \sin{\left(\alpha \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(\alpha \right)}\right) \sin{\left(\alpha \right)}}{\left(- \sin{\left(\alpha \right)} \sin{\left(x \right)} + \cos{\left(\alpha \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}\right)}\right)d x}}}$$

Her terimin integralini alın:

$${\color{red}{\int{\left(\frac{\cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} - \frac{\left(- \sin{\left(\alpha \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(\alpha \right)}\right) \sin{\left(\alpha \right)}}{\left(- \sin{\left(\alpha \right)} \sin{\left(x \right)} + \cos{\left(\alpha \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{\cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} d x} + \int{\left(- \frac{\left(- \sin{\left(\alpha \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(\alpha \right)}\right) \sin{\left(\alpha \right)}}{\left(- \sin{\left(\alpha \right)} \sin{\left(x \right)} + \cos{\left(\alpha \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}\right)}\right)d x}\right)}}$$

$$$c=\frac{\cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}}$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$\int{\left(- \frac{\left(- \sin{\left(\alpha \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(\alpha \right)}\right) \sin{\left(\alpha \right)}}{\left(- \sin{\left(\alpha \right)} \sin{\left(x \right)} + \cos{\left(\alpha \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}\right)}\right)d x} + {\color{red}{\int{\frac{\cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} d x}}} = \int{\left(- \frac{\left(- \sin{\left(\alpha \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(\alpha \right)}\right) \sin{\left(\alpha \right)}}{\left(- \sin{\left(\alpha \right)} \sin{\left(x \right)} + \cos{\left(\alpha \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}\right)}\right)d x} + {\color{red}{\frac{x \cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}}}}$$

$$$u=- \sin{\left(\alpha \right)} \sin{\left(x \right)} + \cos{\left(\alpha \right)} \cos{\left(x \right)}$$$ olsun.

Böylece $$$du=\left(- \sin{\left(\alpha \right)} \sin{\left(x \right)} + \cos{\left(\alpha \right)} \cos{\left(x \right)}\right)^{\prime }dx = \left(- \sin{\left(\alpha \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(\alpha \right)}\right) dx$$$ (adımlar » görülebilir) ve $$$\left(- \sin{\left(\alpha \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(\alpha \right)}\right) dx = du$$$ elde ederiz.

İntegral şu hale gelir

$$\frac{x \cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} + {\color{red}{\int{\left(- \frac{\left(- \sin{\left(\alpha \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(\alpha \right)}\right) \sin{\left(\alpha \right)}}{\left(- \sin{\left(\alpha \right)} \sin{\left(x \right)} + \cos{\left(\alpha \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}\right)}\right)d x}}} = \frac{x \cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} + {\color{red}{\int{\left(- \frac{\sin{\left(\alpha \right)}}{u \left(\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}\right)}\right)d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=- \frac{\sin{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}}$$$ ve $$$f{\left(u \right)} = \frac{1}{u}$$$ ile uygula:

$$\frac{x \cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} + {\color{red}{\int{\left(- \frac{\sin{\left(\alpha \right)}}{u \left(\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}\right)}\right)d u}}} = \frac{x \cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} + {\color{red}{\left(- \frac{\sin{\left(\alpha \right)} \int{\frac{1}{u} d u}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}}\right)}}$$

$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{x \cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} - \frac{\sin{\left(\alpha \right)} {\color{red}{\int{\frac{1}{u} d u}}}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} = \frac{x \cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} - \frac{\sin{\left(\alpha \right)} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}}$$

Hatırlayın ki $$$u=- \sin{\left(\alpha \right)} \sin{\left(x \right)} + \cos{\left(\alpha \right)} \cos{\left(x \right)}$$$:

$$\frac{x \cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)} \sin{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} = \frac{x \cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} - \frac{\ln{\left(\left|{{\color{red}{\left(- \sin{\left(\alpha \right)} \sin{\left(x \right)} + \cos{\left(\alpha \right)} \cos{\left(x \right)}\right)}}}\right| \right)} \sin{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}}$$

Dolayısıyla,

$$\int{\frac{\cos{\left(x \right)}}{\cos{\left(\alpha + x \right)}} d x} = \frac{x \cos{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}} - \frac{\ln{\left(\left|{\sin{\left(\alpha \right)} \sin{\left(x \right)} - \cos{\left(\alpha \right)} \cos{\left(x \right)}}\right| \right)} \sin{\left(\alpha \right)}}{\sin^{2}{\left(\alpha \right)} + \cos^{2}{\left(\alpha \right)}}$$

Sadeleştirin:

$$\int{\frac{\cos{\left(x \right)}}{\cos{\left(\alpha + x \right)}} d x} = x \cos{\left(\alpha \right)} - \ln{\left(\left|{\cos{\left(\alpha + x \right)}}\right| \right)} \sin{\left(\alpha \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\cos{\left(x \right)}}{\cos{\left(\alpha + x \right)}} d x} = x \cos{\left(\alpha \right)} - \ln{\left(\left|{\cos{\left(\alpha + x \right)}}\right| \right)} \sin{\left(\alpha \right)}+C$$

Cevap

$$$\int \frac{\cos{\left(x \right)}}{\cos{\left(\alpha + x \right)}}\, dx = \left(x \cos{\left(\alpha \right)} - \ln\left(\left|{\cos{\left(\alpha + x \right)}}\right|\right) \sin{\left(\alpha \right)}\right) + C$$$A


Please try a new game Rotatly