$$$\frac{2 - x}{1 - x}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{2 - x}{1 - x}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{2 - x}{1 - x}\, dx$$$.

Çözüm

$$$u=1 - x$$$ olsun.

Böylece $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (adımlar » görülebilir) ve $$$dx = - du$$$ elde ederiz.

O halde,

$${\color{red}{\int{\frac{2 - x}{1 - x} d x}}} = {\color{red}{\int{\left(- \frac{u + 1}{u}\right)d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-1$$$ ve $$$f{\left(u \right)} = \frac{u + 1}{u}$$$ ile uygula:

$${\color{red}{\int{\left(- \frac{u + 1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{u + 1}{u} d u}\right)}}$$

Expand the expression:

$$- {\color{red}{\int{\frac{u + 1}{u} d u}}} = - {\color{red}{\int{\left(1 + \frac{1}{u}\right)d u}}}$$

Her terimin integralini alın:

$$- {\color{red}{\int{\left(1 + \frac{1}{u}\right)d u}}} = - {\color{red}{\left(\int{1 d u} + \int{\frac{1}{u} d u}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:

$$- \int{\frac{1}{u} d u} - {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u} d u} - {\color{red}{u}}$$

$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- u - {\color{red}{\int{\frac{1}{u} d u}}} = - u - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Hatırlayın ki $$$u=1 - x$$$:

$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - {\color{red}{u}} = - \ln{\left(\left|{{\color{red}{\left(1 - x\right)}}}\right| \right)} - {\color{red}{\left(1 - x\right)}}$$

Dolayısıyla,

$$\int{\frac{2 - x}{1 - x} d x} = x - \ln{\left(\left|{x - 1}\right| \right)} - 1$$

İntegrasyon sabitini ekleyin (ve ifadeden sabit terimi kaldırın):

$$\int{\frac{2 - x}{1 - x} d x} = x - \ln{\left(\left|{x - 1}\right| \right)}+C$$

Cevap

$$$\int \frac{2 - x}{1 - x}\, dx = \left(x - \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly