$$$\sin{\left(2 x \right)}$$$'nin ikinci türevi

Hesaplayıcı, adımları göstererek $$$\sin{\left(2 x \right)}$$$'in ikinci türevini bulacaktır.

İlgili hesaplayıcılar: Türev Hesaplayıcı, Logaritmik Türev Hesaplayıcı

Otomatik algılama için boş bırakın.
Belirli bir noktadaki türeve ihtiyacınız yoksa boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(2 x \right)}\right)$$$.

Çözüm

Birinci türevi bulun $$$\frac{d}{dx} \left(\sin{\left(2 x \right)}\right)$$$

$$$\sin{\left(2 x \right)}$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ve $$$g{\left(x \right)} = 2 x$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.

Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:

$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(2 x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(2 x\right)\right)}$$

Sinüsün türevi $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(2 x\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(2 x\right)$$

Eski değişkene geri dön:

$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(2 x\right) = \cos{\left({\color{red}\left(2 x\right)} \right)} \frac{d}{dx} \left(2 x\right)$$

Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = 2$$$ ve $$$f{\left(x \right)} = x$$$ ile uygula:

$$\cos{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} = \cos{\left(2 x \right)} {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)}$$

Kuvvet kuralını ($$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$) $$$n = 1$$$ için uygulayın, başka bir deyişle, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$2 \cos{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 2 \cos{\left(2 x \right)} {\color{red}\left(1\right)}$$

Dolayısıyla, $$$\frac{d}{dx} \left(\sin{\left(2 x \right)}\right) = 2 \cos{\left(2 x \right)}$$$.

Ardından, $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(2 x \right)}\right) = \frac{d}{dx} \left(2 \cos{\left(2 x \right)}\right)$$$

Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = 2$$$ ve $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$ ile uygula:

$${\color{red}\left(\frac{d}{dx} \left(2 \cos{\left(2 x \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(\cos{\left(2 x \right)}\right)\right)}$$

$$$\cos{\left(2 x \right)}$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ ve $$$g{\left(x \right)} = 2 x$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.

Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:

$$2 {\color{red}\left(\frac{d}{dx} \left(\cos{\left(2 x \right)}\right)\right)} = 2 {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(2 x\right)\right)}$$

Kosinüsün türevi $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:

$$2 {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(2 x\right) = 2 {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(2 x\right)$$

Eski değişkene geri dön:

$$- 2 \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(2 x\right) = - 2 \sin{\left({\color{red}\left(2 x\right)} \right)} \frac{d}{dx} \left(2 x\right)$$

Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = 2$$$ ve $$$f{\left(x \right)} = x$$$ ile uygula:

$$- 2 \sin{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} = - 2 \sin{\left(2 x \right)} {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)}$$

Kuvvet kuralını ($$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$) $$$n = 1$$$ için uygulayın, başka bir deyişle, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- 4 \sin{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = - 4 \sin{\left(2 x \right)} {\color{red}\left(1\right)}$$

Dolayısıyla, $$$\frac{d}{dx} \left(2 \cos{\left(2 x \right)}\right) = - 4 \sin{\left(2 x \right)}$$$.

Dolayısıyla, $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(2 x \right)}\right) = - 4 \sin{\left(2 x \right)}$$$.

Cevap

$$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(2 x \right)}\right) = - 4 \sin{\left(2 x \right)}$$$A


Please try a new game Rotatly