Bestäm $$$P{\left(X = 18 \right)}$$$ för geometrisk fördelning med $$$n = 18$$$ och $$$p = \frac{1}{8}$$$
Relaterad kalkylator: Kalkylator för exponentialfördelning
Din inmatning
Beräkna de olika värdena för den geometriska fördelningen med $$$n = 18$$$ och $$$p = \frac{1}{8}$$$ (inklusive ett lyckat försök).
Svar
Medelvärde: $$$\mu = \frac{1}{p} = \frac{1}{\frac{1}{8}} = 8$$$A.
Varians: $$$\sigma^{2} = \frac{1 - p}{p^{2}} = \frac{1 - \frac{1}{8}}{\left(\frac{1}{8}\right)^{2}} = 56$$$A.
Standardavvikelse: $$$\sigma = \sqrt{\frac{1 - p}{p^{2}}} = \sqrt{\frac{1 - \frac{1}{8}}{\left(\frac{1}{8}\right)^{2}}} = 2 \sqrt{14}\approx 7.483314773547883.$$$A
$$$P{\left(X = 18 \right)}\approx 0.012913587642949$$$A
$$$P{\left(X \lt 18 \right)}\approx 0.896691298856407$$$A
$$$P{\left(X \leq 18 \right)}\approx 0.909604886499356$$$A
$$$P{\left(X \gt 18 \right)}\approx 0.090395113500644$$$A
$$$P{\left(X \geq 18 \right)}\approx 0.103308701143593$$$A