Längden av $$$\left\langle - \sin{\left(t \right)}, \sqrt{3}, \cos{\left(t \right)}\right\rangle$$$

Kalkylatorn beräknar storleken (längd, norm) för vektorn $$$\left\langle - \sin{\left(t \right)}, \sqrt{3}, \cos{\left(t \right)}\right\rangle$$$, med stegvis lösning.
$$$\langle$$$ $$$\rangle$$$
Kommaseparerat.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm magnituden (längden) av $$$\mathbf{\vec{u}} = \left\langle - \sin{\left(t \right)}, \sqrt{3}, \cos{\left(t \right)}\right\rangle$$$.

Lösning

Magnituden hos en vektor ges av formeln $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

Summan av de kvadrerade absolutbeloppen för koordinaterna är $$$\left|{- \sin{\left(t \right)}}\right|^{2} + \left|{\sqrt{3}}\right|^{2} + \left|{\cos{\left(t \right)}}\right|^{2} = \sin^{2}{\left(t \right)} + \cos^{2}{\left(t \right)} + 3$$$.

Därför är vektorns längd $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sin^{2}{\left(t \right)} + \cos^{2}{\left(t \right)} + 3} = 2$$$.

Svar

Magnituden är $$$2$$$A.


Please try a new game Rotatly