Determinanten av $$$\left[\begin{array}{cc}2 \cos{\left(5 v \right)} & - 10 u \sin{\left(5 v \right)}\\0 & 10 \cos{\left(5 v \right)}\end{array}\right]$$$

Kalkylatorn beräknar determinanten för den kvadratiska $$$2$$$x$$$2$$$-matrisen $$$\left[\begin{array}{cc}2 \cos{\left(5 v \right)} & - 10 u \sin{\left(5 v \right)}\\0 & 10 \cos{\left(5 v \right)}\end{array}\right]$$$ med visade steg.

Relaterad kalkylator: Kalkylator för kofaktormatris

A

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Beräkna $$$\left|\begin{array}{cc}2 \cos{\left(5 v \right)} & - 10 u \sin{\left(5 v \right)}\\0 & 10 \cos{\left(5 v \right)}\end{array}\right|$$$.

Lösning

Determinanten för en 2x2-matris är $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.

$$$\left|\begin{array}{cc}2 \cos{\left(5 v \right)} & - 10 u \sin{\left(5 v \right)}\\0 & 10 \cos{\left(5 v \right)}\end{array}\right| = \left(2 \cos{\left(5 v \right)}\right)\cdot \left(10 \cos{\left(5 v \right)}\right) - \left(- 10 u \sin{\left(5 v \right)}\right)\cdot \left(0\right) = 20 \cos^{2}{\left(5 v \right)}$$$

Svar

$$$\left|\begin{array}{cc}2 \cos{\left(5 v \right)} & - 10 u \sin{\left(5 v \right)}\\0 & 10 \cos{\left(5 v \right)}\end{array}\right| = 20 \cos^{2}{\left(5 v \right)}$$$A


Please try a new game Rotatly