Integralen av $$$x^{2} e^{- \frac{x}{2}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$x^{2} e^{- \frac{x}{2}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int x^{2} e^{- \frac{x}{2}}\, dx$$$.

Lösning

För integralen $$$\int{x^{2} e^{- \frac{x}{2}} d x}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Låt $$$\operatorname{u}=x^{2}$$$ och $$$\operatorname{dv}=e^{- \frac{x}{2}} dx$$$.

Då gäller $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{- \frac{x}{2}} d x}=- 2 e^{- \frac{x}{2}}$$$ (stegen kan ses »).

Integralen kan omskrivas som

$${\color{red}{\int{x^{2} e^{- \frac{x}{2}} d x}}}={\color{red}{\left(x^{2} \cdot \left(- 2 e^{- \frac{x}{2}}\right)-\int{\left(- 2 e^{- \frac{x}{2}}\right) \cdot 2 x d x}\right)}}={\color{red}{\left(- 2 x^{2} e^{- \frac{x}{2}} - \int{\left(- 4 x e^{- \frac{x}{2}}\right)d x}\right)}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=-4$$$ och $$$f{\left(x \right)} = x e^{- \frac{x}{2}}$$$:

$$- 2 x^{2} e^{- \frac{x}{2}} - {\color{red}{\int{\left(- 4 x e^{- \frac{x}{2}}\right)d x}}} = - 2 x^{2} e^{- \frac{x}{2}} - {\color{red}{\left(- 4 \int{x e^{- \frac{x}{2}} d x}\right)}}$$

För integralen $$$\int{x e^{- \frac{x}{2}} d x}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Låt $$$\operatorname{u}=x$$$ och $$$\operatorname{dv}=e^{- \frac{x}{2}} dx$$$.

Då gäller $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{- \frac{x}{2}} d x}=- 2 e^{- \frac{x}{2}}$$$ (stegen kan ses »).

Alltså,

$$- 2 x^{2} e^{- \frac{x}{2}} + 4 {\color{red}{\int{x e^{- \frac{x}{2}} d x}}}=- 2 x^{2} e^{- \frac{x}{2}} + 4 {\color{red}{\left(x \cdot \left(- 2 e^{- \frac{x}{2}}\right)-\int{\left(- 2 e^{- \frac{x}{2}}\right) \cdot 1 d x}\right)}}=- 2 x^{2} e^{- \frac{x}{2}} + 4 {\color{red}{\left(- 2 x e^{- \frac{x}{2}} - \int{\left(- 2 e^{- \frac{x}{2}}\right)d x}\right)}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=-2$$$ och $$$f{\left(x \right)} = e^{- \frac{x}{2}}$$$:

$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 4 {\color{red}{\int{\left(- 2 e^{- \frac{x}{2}}\right)d x}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 4 {\color{red}{\left(- 2 \int{e^{- \frac{x}{2}} d x}\right)}}$$

Låt $$$u=- \frac{x}{2}$$$ vara.

$$$du=\left(- \frac{x}{2}\right)^{\prime }dx = - \frac{dx}{2}$$$ (stegen kan ses »), och vi har att $$$dx = - 2 du$$$.

Integralen blir

$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\int{e^{- \frac{x}{2}} d x}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=-2$$$ och $$$f{\left(u \right)} = e^{u}$$$:

$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\int{\left(- 2 e^{u}\right)d u}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\left(- 2 \int{e^{u} d u}\right)}}$$

Integralen av den exponentiella funktionen är $$$\int{e^{u} d u} = e^{u}$$$:

$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 {\color{red}{\int{e^{u} d u}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 {\color{red}{e^{u}}}$$

Kom ihåg att $$$u=- \frac{x}{2}$$$:

$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 e^{{\color{red}{u}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 e^{{\color{red}{\left(- \frac{x}{2}\right)}}}$$

Alltså,

$$\int{x^{2} e^{- \frac{x}{2}} d x} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 e^{- \frac{x}{2}}$$

Förenkla:

$$\int{x^{2} e^{- \frac{x}{2}} d x} = 2 \left(- x^{2} - 4 x - 8\right) e^{- \frac{x}{2}}$$

Lägg till integrationskonstanten:

$$\int{x^{2} e^{- \frac{x}{2}} d x} = 2 \left(- x^{2} - 4 x - 8\right) e^{- \frac{x}{2}}+C$$

Svar

$$$\int x^{2} e^{- \frac{x}{2}}\, dx = 2 \left(- x^{2} - 4 x - 8\right) e^{- \frac{x}{2}} + C$$$A


Please try a new game Rotatly