Integralen av $$$\sin{\left(x \right)} + 1$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(\sin{\left(x \right)} + 1\right)\, dx$$$.
Lösning
Integrera termvis:
$${\color{red}{\int{\left(\sin{\left(x \right)} + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\sin{\left(x \right)} d x}\right)}}$$
Tillämpa konstantregeln $$$\int c\, dx = c x$$$ med $$$c=1$$$:
$$\int{\sin{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = \int{\sin{\left(x \right)} d x} + {\color{red}{x}}$$
Integralen av sinus är $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$x + {\color{red}{\int{\sin{\left(x \right)} d x}}} = x + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Alltså,
$$\int{\left(\sin{\left(x \right)} + 1\right)d x} = x - \cos{\left(x \right)}$$
Lägg till integrationskonstanten:
$$\int{\left(\sin{\left(x \right)} + 1\right)d x} = x - \cos{\left(x \right)}+C$$
Svar
$$$\int \left(\sin{\left(x \right)} + 1\right)\, dx = \left(x - \cos{\left(x \right)}\right) + C$$$A