Integralen av $$$8 a^{8} w^{8}$$$ med avseende på $$$a$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int 8 a^{8} w^{8}\, da$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ med $$$c=8 w^{8}$$$ och $$$f{\left(a \right)} = a^{8}$$$:
$${\color{red}{\int{8 a^{8} w^{8} d a}}} = {\color{red}{\left(8 w^{8} \int{a^{8} d a}\right)}}$$
Tillämpa potensregeln $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=8$$$:
$$8 w^{8} {\color{red}{\int{a^{8} d a}}}=8 w^{8} {\color{red}{\frac{a^{1 + 8}}{1 + 8}}}=8 w^{8} {\color{red}{\left(\frac{a^{9}}{9}\right)}}$$
Alltså,
$$\int{8 a^{8} w^{8} d a} = \frac{8 a^{9} w^{8}}{9}$$
Lägg till integrationskonstanten:
$$\int{8 a^{8} w^{8} d a} = \frac{8 a^{9} w^{8}}{9}+C$$
Svar
$$$\int 8 a^{8} w^{8}\, da = \frac{8 a^{9} w^{8}}{9} + C$$$A