Integralen av $$$e^{- \frac{6 x}{5}}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int e^{- \frac{6 x}{5}}\, dx$$$.
Lösning
Låt $$$u=- \frac{6 x}{5}$$$ vara.
Då $$$du=\left(- \frac{6 x}{5}\right)^{\prime }dx = - \frac{6 dx}{5}$$$ (stegen kan ses »), och vi har att $$$dx = - \frac{5 du}{6}$$$.
Integralen kan omskrivas som
$${\color{red}{\int{e^{- \frac{6 x}{5}} d x}}} = {\color{red}{\int{\left(- \frac{5 e^{u}}{6}\right)d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=- \frac{5}{6}$$$ och $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\left(- \frac{5 e^{u}}{6}\right)d u}}} = {\color{red}{\left(- \frac{5 \int{e^{u} d u}}{6}\right)}}$$
Integralen av den exponentiella funktionen är $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{5 {\color{red}{\int{e^{u} d u}}}}{6} = - \frac{5 {\color{red}{e^{u}}}}{6}$$
Kom ihåg att $$$u=- \frac{6 x}{5}$$$:
$$- \frac{5 e^{{\color{red}{u}}}}{6} = - \frac{5 e^{{\color{red}{\left(- \frac{6 x}{5}\right)}}}}{6}$$
Alltså,
$$\int{e^{- \frac{6 x}{5}} d x} = - \frac{5 e^{- \frac{6 x}{5}}}{6}$$
Lägg till integrationskonstanten:
$$\int{e^{- \frac{6 x}{5}} d x} = - \frac{5 e^{- \frac{6 x}{5}}}{6}+C$$
Svar
$$$\int e^{- \frac{6 x}{5}}\, dx = - \frac{5 e^{- \frac{6 x}{5}}}{6} + C$$$A