Integralen av $$$\frac{1}{\sin{\left(x \right)} \tan{\left(x \right)}}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{1}{\sin{\left(x \right)} \tan{\left(x \right)}}\, dx$$$.
Lösning
Låt $$$u=\sin{\left(x \right)}$$$ vara.
Då $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (stegen kan ses »), och vi har att $$$\cos{\left(x \right)} dx = du$$$.
Alltså,
$${\color{red}{\int{\frac{1}{\sin{\left(x \right)} \tan{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=-2$$$:
$${\color{red}{\int{\frac{1}{u^{2}} d u}}}={\color{red}{\int{u^{-2} d u}}}={\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- u^{-1}\right)}}={\color{red}{\left(- \frac{1}{u}\right)}}$$
Kom ihåg att $$$u=\sin{\left(x \right)}$$$:
$$- {\color{red}{u}}^{-1} = - {\color{red}{\sin{\left(x \right)}}}^{-1}$$
Alltså,
$$\int{\frac{1}{\sin{\left(x \right)} \tan{\left(x \right)}} d x} = - \frac{1}{\sin{\left(x \right)}}$$
Lägg till integrationskonstanten:
$$\int{\frac{1}{\sin{\left(x \right)} \tan{\left(x \right)}} d x} = - \frac{1}{\sin{\left(x \right)}}+C$$
Svar
$$$\int \frac{1}{\sin{\left(x \right)} \tan{\left(x \right)}}\, dx = - \frac{1}{\sin{\left(x \right)}} + C$$$A