Integralen av $$$9 e^{\sqrt{x}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$9 e^{\sqrt{x}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int 9 e^{\sqrt{x}}\, dx$$$.

Lösning

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=9$$$ och $$$f{\left(x \right)} = e^{\sqrt{x}}$$$:

$${\color{red}{\int{9 e^{\sqrt{x}} d x}}} = {\color{red}{\left(9 \int{e^{\sqrt{x}} d x}\right)}}$$

Låt $$$u=\sqrt{x}$$$ vara.

$$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (stegen kan ses »), och vi har att $$$\frac{dx}{\sqrt{x}} = 2 du$$$.

Alltså,

$$9 {\color{red}{\int{e^{\sqrt{x}} d x}}} = 9 {\color{red}{\int{2 u e^{u} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=2$$$ och $$$f{\left(u \right)} = u e^{u}$$$:

$$9 {\color{red}{\int{2 u e^{u} d u}}} = 9 {\color{red}{\left(2 \int{u e^{u} d u}\right)}}$$

För integralen $$$\int{u e^{u} d u}$$$, använd partiell integration $$$\int \operatorname{\mu} \operatorname{dv} = \operatorname{\mu}\operatorname{v} - \int \operatorname{v} \operatorname{d\mu}$$$.

Låt $$$\operatorname{\mu}=u$$$ och $$$\operatorname{dv}=e^{u} du$$$.

Då gäller $$$\operatorname{d\mu}=\left(u\right)^{\prime }du=1 du$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (stegen kan ses »).

Alltså,

$$18 {\color{red}{\int{u e^{u} d u}}}=18 {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}=18 {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$

Integralen av den exponentiella funktionen är $$$\int{e^{u} d u} = e^{u}$$$:

$$18 u e^{u} - 18 {\color{red}{\int{e^{u} d u}}} = 18 u e^{u} - 18 {\color{red}{e^{u}}}$$

Kom ihåg att $$$u=\sqrt{x}$$$:

$$- 18 e^{{\color{red}{u}}} + 18 {\color{red}{u}} e^{{\color{red}{u}}} = - 18 e^{{\color{red}{\sqrt{x}}}} + 18 {\color{red}{\sqrt{x}}} e^{{\color{red}{\sqrt{x}}}}$$

Alltså,

$$\int{9 e^{\sqrt{x}} d x} = 18 \sqrt{x} e^{\sqrt{x}} - 18 e^{\sqrt{x}}$$

Förenkla:

$$\int{9 e^{\sqrt{x}} d x} = 18 \left(\sqrt{x} - 1\right) e^{\sqrt{x}}$$

Lägg till integrationskonstanten:

$$\int{9 e^{\sqrt{x}} d x} = 18 \left(\sqrt{x} - 1\right) e^{\sqrt{x}}+C$$

Svar

$$$\int 9 e^{\sqrt{x}}\, dx = 18 \left(\sqrt{x} - 1\right) e^{\sqrt{x}} + C$$$A


Please try a new game Rotatly