Integralen av $$$\frac{68}{r}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{68}{r}\, dr$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(r \right)}\, dr = c \int f{\left(r \right)}\, dr$$$ med $$$c=68$$$ och $$$f{\left(r \right)} = \frac{1}{r}$$$:
$${\color{red}{\int{\frac{68}{r} d r}}} = {\color{red}{\left(68 \int{\frac{1}{r} d r}\right)}}$$
Integralen av $$$\frac{1}{r}$$$ är $$$\int{\frac{1}{r} d r} = \ln{\left(\left|{r}\right| \right)}$$$:
$$68 {\color{red}{\int{\frac{1}{r} d r}}} = 68 {\color{red}{\ln{\left(\left|{r}\right| \right)}}}$$
Alltså,
$$\int{\frac{68}{r} d r} = 68 \ln{\left(\left|{r}\right| \right)}$$
Lägg till integrationskonstanten:
$$\int{\frac{68}{r} d r} = 68 \ln{\left(\left|{r}\right| \right)}+C$$
Svar
$$$\int \frac{68}{r}\, dr = 68 \ln\left(\left|{r}\right|\right) + C$$$A