Integralen av $$$2 x - 1$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(2 x - 1\right)\, dx$$$.
Lösning
Integrera termvis:
$${\color{red}{\int{\left(2 x - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{2 x d x}\right)}}$$
Tillämpa konstantregeln $$$\int c\, dx = c x$$$ med $$$c=1$$$:
$$\int{2 x d x} - {\color{red}{\int{1 d x}}} = \int{2 x d x} - {\color{red}{x}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=2$$$ och $$$f{\left(x \right)} = x$$$:
$$- x + {\color{red}{\int{2 x d x}}} = - x + {\color{red}{\left(2 \int{x d x}\right)}}$$
Tillämpa potensregeln $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=1$$$:
$$- x + 2 {\color{red}{\int{x d x}}}=- x + 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- x + 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Alltså,
$$\int{\left(2 x - 1\right)d x} = x^{2} - x$$
Förenkla:
$$\int{\left(2 x - 1\right)d x} = x \left(x - 1\right)$$
Lägg till integrationskonstanten:
$$\int{\left(2 x - 1\right)d x} = x \left(x - 1\right)+C$$
Svar
$$$\int \left(2 x - 1\right)\, dx = x \left(x - 1\right) + C$$$A