Integralen av $$$\frac{1}{x + 1}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{1}{x + 1}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{1}{x + 1}\, dx$$$.

Lösning

Låt $$$u=x + 1$$$ vara.

$$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (stegen kan ses »), och vi har att $$$dx = du$$$.

Integralen blir

$${\color{red}{\int{\frac{1}{x + 1} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$

Integralen av $$$\frac{1}{u}$$$ är $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Kom ihåg att $$$u=x + 1$$$:

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}$$

Alltså,

$$\int{\frac{1}{x + 1} d x} = \ln{\left(\left|{x + 1}\right| \right)}$$

Lägg till integrationskonstanten:

$$\int{\frac{1}{x + 1} d x} = \ln{\left(\left|{x + 1}\right| \right)}+C$$

Svar

$$$\int \frac{1}{x + 1}\, dx = \ln\left(\left|{x + 1}\right|\right) + C$$$A


Please try a new game Rotatly