Integralen av $$$\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}$$$ med avseende på $$$x$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}\, dx$$$.
Lösning
Multiplicera täljare och nämnare med $$$\sec^{2}{\left(x \right)}$$$:
$${\color{red}{\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{a^{2} + b^{2} \tan^{2}{\left(x \right)}} d x}}}$$
Låt $$$u=\tan{\left(x \right)}$$$ vara.
Då $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (stegen kan ses »), och vi har att $$$\sec^{2}{\left(x \right)} dx = du$$$.
Alltså,
$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{a^{2} + b^{2} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{a^{2} + b^{2} u^{2}} d u}}}$$
Låt $$$v=\frac{u \left|{b}\right|}{\left|{a}\right|}$$$ vara.
Då $$$dv=\left(\frac{u \left|{b}\right|}{\left|{a}\right|}\right)^{\prime }du = \frac{\left|{b}\right|}{\left|{a}\right|} du$$$ (stegen kan ses »), och vi har att $$$du = \frac{\left|{a}\right| dv}{\left|{b}\right|}$$$.
Integralen kan omskrivas som
$${\color{red}{\int{\frac{1}{a^{2} + b^{2} u^{2}} d u}}} = {\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(v^{2} + 1\right) \left|{b}\right|} d v}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ med $$$c=\frac{\left|{a}\right|}{a^{2} \left|{b}\right|}$$$ och $$$f{\left(v \right)} = \frac{1}{v^{2} + 1}$$$:
$${\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(v^{2} + 1\right) \left|{b}\right|} d v}}} = {\color{red}{\frac{\left|{a}\right| \int{\frac{1}{v^{2} + 1} d v}}{a^{2} \left|{b}\right|}}}$$
Integralen av $$$\frac{1}{v^{2} + 1}$$$ är $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$\frac{\left|{a}\right| {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{a^{2} \left|{b}\right|} = \frac{\left|{a}\right| {\color{red}{\operatorname{atan}{\left(v \right)}}}}{a^{2} \left|{b}\right|}$$
Kom ihåg att $$$v=\frac{u \left|{b}\right|}{\left|{a}\right|}$$$:
$$\frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{v}} \right)}}{a^{2} \left|{b}\right|} = \frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{\frac{u \left|{b}\right|}{\left|{a}\right|}}} \right)}}{a^{2} \left|{b}\right|}$$
Kom ihåg att $$$u=\tan{\left(x \right)}$$$:
$$\frac{\left|{a}\right| \operatorname{atan}{\left(\frac{\left|{b}\right| {\color{red}{u}}}{\left|{a}\right|} \right)}}{a^{2} \left|{b}\right|} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{\left|{b}\right| {\color{red}{\tan{\left(x \right)}}}}{\left|{a}\right|} \right)}}{a^{2} \left|{b}\right|}$$
Alltså,
$$\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{\tan{\left(x \right)} \left|{b}\right|}{\left|{a}\right|} \right)}}{a^{2} \left|{b}\right|}$$
Förenkla:
$$\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x} = \frac{\left|{\frac{a}{b}}\right| \operatorname{atan}{\left(\tan{\left(x \right)} \left|{\frac{b}{a}}\right| \right)}}{a^{2}}$$
Lägg till integrationskonstanten:
$$\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x} = \frac{\left|{\frac{a}{b}}\right| \operatorname{atan}{\left(\tan{\left(x \right)} \left|{\frac{b}{a}}\right| \right)}}{a^{2}}+C$$
Svar
$$$\int \frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}\, dx = \frac{\left|{\frac{a}{b}}\right| \operatorname{atan}{\left(\tan{\left(x \right)} \left|{\frac{b}{a}}\right| \right)}}{a^{2}} + C$$$A