Integralen av $$$y^{3} e^{\frac{y^{2}}{2}}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int y^{3} e^{\frac{y^{2}}{2}}\, dy$$$.
Lösning
Låt $$$u=y^{2}$$$ vara.
Då $$$du=\left(y^{2}\right)^{\prime }dy = 2 y dy$$$ (stegen kan ses »), och vi har att $$$y dy = \frac{du}{2}$$$.
Alltså,
$${\color{red}{\int{y^{3} e^{\frac{y^{2}}{2}} d y}}} = {\color{red}{\int{\frac{u e^{\frac{u}{2}}}{2} d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(u \right)} = u e^{\frac{u}{2}}$$$:
$${\color{red}{\int{\frac{u e^{\frac{u}{2}}}{2} d u}}} = {\color{red}{\left(\frac{\int{u e^{\frac{u}{2}} d u}}{2}\right)}}$$
För integralen $$$\int{u e^{\frac{u}{2}} d u}$$$, använd partiell integration $$$\int \operatorname{\mu} \operatorname{dv} = \operatorname{\mu}\operatorname{v} - \int \operatorname{v} \operatorname{d\mu}$$$.
Låt $$$\operatorname{\mu}=u$$$ och $$$\operatorname{dv}=e^{\frac{u}{2}} du$$$.
Då gäller $$$\operatorname{d\mu}=\left(u\right)^{\prime }du=1 du$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{\frac{u}{2}} d u}=2 e^{\frac{u}{2}}$$$ (stegen kan ses »).
Integralen kan omskrivas som
$$\frac{{\color{red}{\int{u e^{\frac{u}{2}} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot 2 e^{\frac{u}{2}}-\int{2 e^{\frac{u}{2}} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(2 u e^{\frac{u}{2}} - \int{2 e^{\frac{u}{2}} d u}\right)}}}{2}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=2$$$ och $$$f{\left(u \right)} = e^{\frac{u}{2}}$$$:
$$u e^{\frac{u}{2}} - \frac{{\color{red}{\int{2 e^{\frac{u}{2}} d u}}}}{2} = u e^{\frac{u}{2}} - \frac{{\color{red}{\left(2 \int{e^{\frac{u}{2}} d u}\right)}}}{2}$$
Låt $$$v=\frac{u}{2}$$$ vara.
Då $$$dv=\left(\frac{u}{2}\right)^{\prime }du = \frac{du}{2}$$$ (stegen kan ses »), och vi har att $$$du = 2 dv$$$.
Integralen blir
$$u e^{\frac{u}{2}} - {\color{red}{\int{e^{\frac{u}{2}} d u}}} = u e^{\frac{u}{2}} - {\color{red}{\int{2 e^{v} d v}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ med $$$c=2$$$ och $$$f{\left(v \right)} = e^{v}$$$:
$$u e^{\frac{u}{2}} - {\color{red}{\int{2 e^{v} d v}}} = u e^{\frac{u}{2}} - {\color{red}{\left(2 \int{e^{v} d v}\right)}}$$
Integralen av den exponentiella funktionen är $$$\int{e^{v} d v} = e^{v}$$$:
$$u e^{\frac{u}{2}} - 2 {\color{red}{\int{e^{v} d v}}} = u e^{\frac{u}{2}} - 2 {\color{red}{e^{v}}}$$
Kom ihåg att $$$v=\frac{u}{2}$$$:
$$u e^{\frac{u}{2}} - 2 e^{{\color{red}{v}}} = u e^{\frac{u}{2}} - 2 e^{{\color{red}{\left(\frac{u}{2}\right)}}}$$
Kom ihåg att $$$u=y^{2}$$$:
$$- 2 e^{\frac{{\color{red}{u}}}{2}} + {\color{red}{u}} e^{\frac{{\color{red}{u}}}{2}} = - 2 e^{\frac{{\color{red}{y^{2}}}}{2}} + {\color{red}{y^{2}}} e^{\frac{{\color{red}{y^{2}}}}{2}}$$
Alltså,
$$\int{y^{3} e^{\frac{y^{2}}{2}} d y} = y^{2} e^{\frac{y^{2}}{2}} - 2 e^{\frac{y^{2}}{2}}$$
Förenkla:
$$\int{y^{3} e^{\frac{y^{2}}{2}} d y} = \left(y^{2} - 2\right) e^{\frac{y^{2}}{2}}$$
Lägg till integrationskonstanten:
$$\int{y^{3} e^{\frac{y^{2}}{2}} d y} = \left(y^{2} - 2\right) e^{\frac{y^{2}}{2}}+C$$
Svar
$$$\int y^{3} e^{\frac{y^{2}}{2}}\, dy = \left(y^{2} - 2\right) e^{\frac{y^{2}}{2}} + C$$$A