Integralen av $$$x^{2} - 38 \sin{\left(x \right)}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$x^{2} - 38 \sin{\left(x \right)}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \left(x^{2} - 38 \sin{\left(x \right)}\right)\, dx$$$.

Lösning

Integrera termvis:

$${\color{red}{\int{\left(x^{2} - 38 \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} - \int{38 \sin{\left(x \right)} d x}\right)}}$$

Tillämpa potensregeln $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=2$$$:

$$- \int{38 \sin{\left(x \right)} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{38 \sin{\left(x \right)} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{38 \sin{\left(x \right)} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=38$$$ och $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:

$$\frac{x^{3}}{3} - {\color{red}{\int{38 \sin{\left(x \right)} d x}}} = \frac{x^{3}}{3} - {\color{red}{\left(38 \int{\sin{\left(x \right)} d x}\right)}}$$

Integralen av sinus är $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{x^{3}}{3} - 38 {\color{red}{\int{\sin{\left(x \right)} d x}}} = \frac{x^{3}}{3} - 38 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$

Alltså,

$$\int{\left(x^{2} - 38 \sin{\left(x \right)}\right)d x} = \frac{x^{3}}{3} + 38 \cos{\left(x \right)}$$

Lägg till integrationskonstanten:

$$\int{\left(x^{2} - 38 \sin{\left(x \right)}\right)d x} = \frac{x^{3}}{3} + 38 \cos{\left(x \right)}+C$$

Svar

$$$\int \left(x^{2} - 38 \sin{\left(x \right)}\right)\, dx = \left(\frac{x^{3}}{3} + 38 \cos{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly