Integralen av $$$\tan{\left(x \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \tan{\left(x \right)}\, dx$$$.
Lösning
Skriv om tangenten som $$$\tan\left(x\right)=\frac{\sin\left(x\right)}{\cos\left(x\right)}$$$:
$${\color{red}{\int{\tan{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}$$
Låt $$$u=\cos{\left(x \right)}$$$ vara.
Då $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (stegen kan ses »), och vi har att $$$\sin{\left(x \right)} dx = - du$$$.
Alltså,
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=-1$$$ och $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
Integralen av $$$\frac{1}{u}$$$ är $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{u} d u}}} = - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Kom ihåg att $$$u=\cos{\left(x \right)}$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)}$$
Alltså,
$$\int{\tan{\left(x \right)} d x} = - \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}$$
Lägg till integrationskonstanten:
$$\int{\tan{\left(x \right)} d x} = - \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}+C$$
Svar
$$$\int \tan{\left(x \right)}\, dx = - \ln\left(\left|{\cos{\left(x \right)}}\right|\right) + C$$$A