Integralen av $$$\sin{\left(2 t - 2 x \right)}$$$ med avseende på $$$x$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \sin{\left(2 t - 2 x \right)}\, dx$$$.
Lösning
Låt $$$u=2 t - 2 x$$$ vara.
Då $$$du=\left(2 t - 2 x\right)^{\prime }dx = - 2 dx$$$ (stegen kan ses »), och vi har att $$$dx = - \frac{du}{2}$$$.
Alltså,
$${\color{red}{\int{\sin{\left(2 t - 2 x \right)} d x}}} = {\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{2}\right)d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=- \frac{1}{2}$$$ och $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{2}\right)d u}}} = {\color{red}{\left(- \frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
Integralen av sinus är $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
Kom ihåg att $$$u=2 t - 2 x$$$:
$$\frac{\cos{\left({\color{red}{u}} \right)}}{2} = \frac{\cos{\left({\color{red}{\left(2 t - 2 x\right)}} \right)}}{2}$$
Alltså,
$$\int{\sin{\left(2 t - 2 x \right)} d x} = \frac{\cos{\left(2 t - 2 x \right)}}{2}$$
Förenkla:
$$\int{\sin{\left(2 t - 2 x \right)} d x} = \frac{\cos{\left(2 \left(- t + x\right) \right)}}{2}$$
Lägg till integrationskonstanten:
$$\int{\sin{\left(2 t - 2 x \right)} d x} = \frac{\cos{\left(2 \left(- t + x\right) \right)}}{2}+C$$
Svar
$$$\int \sin{\left(2 t - 2 x \right)}\, dx = \frac{\cos{\left(2 \left(- t + x\right) \right)}}{2} + C$$$A