Integralen av $$$t \sin^{2}{\left(\omega \right)}$$$ med avseende på $$$t$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$t \sin^{2}{\left(\omega \right)}$$$ med avseende på $$$t$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int t \sin^{2}{\left(\omega \right)}\, dt$$$.

Lösning

Tillämpa konstantfaktorregeln $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ med $$$c=\sin^{2}{\left(\omega \right)}$$$ och $$$f{\left(t \right)} = t$$$:

$${\color{red}{\int{t \sin^{2}{\left(\omega \right)} d t}}} = {\color{red}{\sin^{2}{\left(\omega \right)} \int{t d t}}}$$

Tillämpa potensregeln $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=1$$$:

$$\sin^{2}{\left(\omega \right)} {\color{red}{\int{t d t}}}=\sin^{2}{\left(\omega \right)} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=\sin^{2}{\left(\omega \right)} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$

Alltså,

$$\int{t \sin^{2}{\left(\omega \right)} d t} = \frac{t^{2} \sin^{2}{\left(\omega \right)}}{2}$$

Lägg till integrationskonstanten:

$$\int{t \sin^{2}{\left(\omega \right)} d t} = \frac{t^{2} \sin^{2}{\left(\omega \right)}}{2}+C$$

Svar

$$$\int t \sin^{2}{\left(\omega \right)}\, dt = \frac{t^{2} \sin^{2}{\left(\omega \right)}}{2} + C$$$A


Please try a new game Rotatly