Integralen av $$$\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}\, dx$$$.
Lösning
Låt $$$u=\sin{\left(x \right)}$$$ vara.
Då $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (stegen kan ses »), och vi har att $$$\cos{\left(x \right)} dx = du$$$.
Alltså,
$${\color{red}{\int{\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\sin{\left(u \right)} d u}}}$$
Integralen av sinus är $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Kom ihåg att $$$u=\sin{\left(x \right)}$$$:
$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{\sin{\left(x \right)}}} \right)}$$
Alltså,
$$\int{\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} d x} = - \cos{\left(\sin{\left(x \right)} \right)}$$
Lägg till integrationskonstanten:
$$\int{\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} d x} = - \cos{\left(\sin{\left(x \right)} \right)}+C$$
Svar
$$$\int \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}\, dx = - \cos{\left(\sin{\left(x \right)} \right)} + C$$$A