Integralen av $$$\left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)}\, dx$$$.
Lösning
Expand the expression:
$${\color{red}{\int{\left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \tan{\left(x \right)} \sec{\left(x \right)} + \sec^{2}{\left(x \right)}\right)d x}}}$$
Integrera termvis:
$${\color{red}{\int{\left(- \tan{\left(x \right)} \sec{\left(x \right)} + \sec^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\tan{\left(x \right)} \sec{\left(x \right)} d x} + \int{\sec^{2}{\left(x \right)} d x}\right)}}$$
Integralen av $$$\sec^{2}{\left(x \right)}$$$ är $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:
$$- \int{\tan{\left(x \right)} \sec{\left(x \right)} d x} + {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = - \int{\tan{\left(x \right)} \sec{\left(x \right)} d x} + {\color{red}{\tan{\left(x \right)}}}$$
Integralen av $$$\tan{\left(x \right)} \sec{\left(x \right)}$$$ är $$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} = \sec{\left(x \right)}$$$:
$$\tan{\left(x \right)} - {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = \tan{\left(x \right)} - {\color{red}{\sec{\left(x \right)}}}$$
Alltså,
$$\int{\left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)} d x} = \tan{\left(x \right)} - \sec{\left(x \right)}$$
Lägg till integrationskonstanten:
$$\int{\left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)} d x} = \tan{\left(x \right)} - \sec{\left(x \right)}+C$$
Svar
$$$\int \left(- \tan{\left(x \right)} + \sec{\left(x \right)}\right) \sec{\left(x \right)}\, dx = \left(\tan{\left(x \right)} - \sec{\left(x \right)}\right) + C$$$A