Integralen av $$$r^{n}$$$ med avseende på $$$n$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int r^{n}\, dn$$$.
Lösning
Apply the exponential rule $$$\int{a^{n} d n} = \frac{a^{n}}{\ln{\left(a \right)}}$$$ with $$$a=r$$$:
$${\color{red}{\int{r^{n} d n}}} = {\color{red}{\frac{r^{n}}{\ln{\left(r \right)}}}}$$
Alltså,
$$\int{r^{n} d n} = \frac{r^{n}}{\ln{\left(r \right)}}$$
Lägg till integrationskonstanten:
$$\int{r^{n} d n} = \frac{r^{n}}{\ln{\left(r \right)}}+C$$
Svar
$$$\int r^{n}\, dn = \frac{r^{n}}{\ln\left(r\right)} + C$$$A
Please try a new game Rotatly