Integralen av $$$\pi^{x}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \pi^{x}\, dx$$$.
Lösning
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=\pi$$$:
$${\color{red}{\int{\pi^{x} d x}}} = {\color{red}{\frac{\pi^{x}}{\ln{\left(\pi \right)}}}}$$
Alltså,
$$\int{\pi^{x} d x} = \frac{\pi^{x}}{\ln{\left(\pi \right)}}$$
Lägg till integrationskonstanten:
$$\int{\pi^{x} d x} = \frac{\pi^{x}}{\ln{\left(\pi \right)}}+C$$
Svar
$$$\int \pi^{x}\, dx = \frac{\pi^{x}}{\ln\left(\pi\right)} + C$$$A
Please try a new game Rotatly