Integralen av $$$\ln\left(2 x^{3}\right)$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \ln\left(2 x^{3}\right)\, dx$$$.
Lösning
För integralen $$$\int{\ln{\left(2 x^{3} \right)} d x}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Låt $$$\operatorname{u}=\ln{\left(2 x^{3} \right)}$$$ och $$$\operatorname{dv}=dx$$$.
Då gäller $$$\operatorname{du}=\left(\ln{\left(2 x^{3} \right)}\right)^{\prime }dx=\frac{3}{x} dx$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{1 d x}=x$$$ (stegen kan ses »).
Integralen blir
$${\color{red}{\int{\ln{\left(2 x^{3} \right)} d x}}}={\color{red}{\left(\ln{\left(2 x^{3} \right)} \cdot x-\int{x \cdot \frac{3}{x} d x}\right)}}={\color{red}{\left(x \ln{\left(2 x^{3} \right)} - \int{3 d x}\right)}}$$
Tillämpa konstantregeln $$$\int c\, dx = c x$$$ med $$$c=3$$$:
$$x \ln{\left(2 x^{3} \right)} - {\color{red}{\int{3 d x}}} = x \ln{\left(2 x^{3} \right)} - {\color{red}{\left(3 x\right)}}$$
Alltså,
$$\int{\ln{\left(2 x^{3} \right)} d x} = x \ln{\left(2 x^{3} \right)} - 3 x$$
Förenkla:
$$\int{\ln{\left(2 x^{3} \right)} d x} = x \left(3 \ln{\left(x \right)} - 3 + \ln{\left(2 \right)}\right)$$
Lägg till integrationskonstanten:
$$\int{\ln{\left(2 x^{3} \right)} d x} = x \left(3 \ln{\left(x \right)} - 3 + \ln{\left(2 \right)}\right)+C$$
Svar
$$$\int \ln\left(2 x^{3}\right)\, dx = x \left(3 \ln\left(x\right) - 3 + \ln\left(2\right)\right) + C$$$A