Integralen av $$$a d e^{\frac{x^{2}}{a^{2}}}$$$ med avseende på $$$x$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int a d e^{\frac{x^{2}}{a^{2}}}\, dx$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=a d$$$ och $$$f{\left(x \right)} = e^{\frac{x^{2}}{a^{2}}}$$$:
$${\color{red}{\int{a d e^{\frac{x^{2}}{a^{2}}} d x}}} = {\color{red}{a d \int{e^{\frac{x^{2}}{a^{2}}} d x}}}$$
Låt $$$u=\frac{x}{\left|{a}\right|}$$$ vara.
Då $$$du=\left(\frac{x}{\left|{a}\right|}\right)^{\prime }dx = \frac{dx}{\left|{a}\right|}$$$ (stegen kan ses »), och vi har att $$$dx = \left|{a}\right| du$$$.
Integralen kan omskrivas som
$$a d {\color{red}{\int{e^{\frac{x^{2}}{a^{2}}} d x}}} = a d {\color{red}{\int{e^{u^{2}} \left|{a}\right| d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\left|{a}\right|$$$ och $$$f{\left(u \right)} = e^{u^{2}}$$$:
$$a d {\color{red}{\int{e^{u^{2}} \left|{a}\right| d u}}} = a d {\color{red}{\left|{a}\right| \int{e^{u^{2}} d u}}}$$
Denna integral (Imaginära felintegralen) har ingen sluten form:
$$a d \left|{a}\right| {\color{red}{\int{e^{u^{2}} d u}}} = a d \left|{a}\right| {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}$$
Kom ihåg att $$$u=\frac{x}{\left|{a}\right|}$$$:
$$\frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left({\color{red}{u}} \right)}}{2} = \frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left({\color{red}{\frac{x}{\left|{a}\right|}}} \right)}}{2}$$
Alltså,
$$\int{a d e^{\frac{x^{2}}{a^{2}}} d x} = \frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$
Lägg till integrationskonstanten:
$$\int{a d e^{\frac{x^{2}}{a^{2}}} d x} = \frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}+C$$
Svar
$$$\int a d e^{\frac{x^{2}}{a^{2}}}\, dx = \frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left(\frac{x}{\left|{a}\right|} \right)}}{2} + C$$$A